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Introduction

Introduction
In this book you will study a series of connected topics in the area of
extragalactic astrophysics (the study of the Universe beyond the Milky
Way). Each one involves exploring astrophysical environments in the
context of galaxy evolution, and through consideration of the microphysics
of radiation and matter, and their interaction. You will also revisit the
topics of special and general relativity, and their impact on astronomical
observations.

There are five chapters in The Distant Universe, as described below.

• Chapter 1 explores the epoch in the history of the Universe called
cosmic dawn, during which the first stars and galaxies formed, and
supermassive black holes grew together with their host galaxies.

• Chapter 2 describes the phenomenon of gravitational lensing, in which
light from more-distant objects is bent in the vicinity of large masses,
causing a variety of important observational effects.

• Chapter 3 provides an in-depth exploration of galaxy clusters, including
how environmental factors affect galaxy evolution, and how
galaxy-cluster observations are used to study dark matter.

• Chapter 4 considers the physics of the highly energetic jets that are
ejected from supermassive black holes. You will read about their
relativistic speeds and radiation processes (and investigate how these
affect observations), and the importance of jets for galaxy evolution.

• Chapter 5 explores the explosive phenomenon of gamma-ray bursts,
including their observational properties, and the best current models to
explain their underlying physics and relation to star and galaxy
evolution.

As with Cosmology Parts 1 and 2, the exercises in each chapter are an
important element of your learning, with full solutions provided at the end
of the book. The table of physical constants is also repeated at the end of
this book for use in your calculations, and definitions for terms highlighted
in bold may be found in the module glossary. Where we think it could be
helpful we have also included references back to equations or figures in the
Cosmology books, which you may find useful to revisit to remind yourself
of the relevant underlying concepts. All other cross-references to content
within chapters relate implicitly to this book, instead.

Throughout the text, coloured boxes are again used to highlight particular
types of information. Orange boxes highlight the most important
equations and other key information. Turquoise boxes indicate additional
information, such as reminders of concepts that you may have met in
previous study, or ideas that are partly beyond the scope of the module
but provide additional context. Blue boxes indicate where further, optional
resources are available on the module website.
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Chapter 1 Cosmic dawn

Chapter 1 Cosmic dawn
Modern telescopes allow us to peer deep into the distant reaches of the
Universe. The finite speed of light means that, by doing so, we are also
observing galaxies as they appeared at much earlier times in the Universe’s
history. This chapter focuses on a period in the early Universe that is
known as cosmic dawn, when the very first galaxies and black holes formed
and ionised their surroundings. Remarkably, we now have the technology
to find and study galaxies so distant that their light was emitted during
the cosmic dawn era.

Objectives
Working through this chapter will enable you to:

• explain the significance of the period of reionisation for the evolution of
the Universe, and summarise the main observational knowledge we have
about when reionisation took place

• estimate the relative contributions of galaxies and quasars to
reionisation in the early Universe

• describe the key methods used to find and study the earliest galaxies

• explain the significance of the Eddington limit for the growth of black
holes in the early Universe

• summarise current observational and theoretical knowledge about the
earliest black holes

• describe and investigate the key relationships between the properties of
galaxies and their central black holes

• critically compare theories for the origin and growth of the first
supermassive black holes (SMBHs).
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Chapter 1 Cosmic dawn

1.1 A timeline of cosmic dawn
Figure 1.1 shows a timeline for how the baryonic gas in the Universe is
thought to have evolved, focusing on the stages after recombination.

Figure 1.1 A timeline of how baryonic material evolved with cosmic time.

As you may recall from your study of Cosmology, the dark ages refers to
the period in which matter clumped together under gravity prior to the
production of the first stars.

Why was the baryonic gas neutral during the dark ages?

The gas became neutral at recombination, when electrons and ions came
together to form atoms. The only photons present during the dark ages
were the cosmic microwave background (CMB) photons, which were
neither energetic nor numerous enough to ionise the gas.

Cosmic dawn describes the era during which ‘the lights turned on’: in
other words, the period when the first stars and galaxies were formed and
began to emit large amounts of radiation. The first stars (indicated in
bright red in Figure 1.1) are thought to have formed when z ! 20 and the
Universe was ∼150–200 million years old; the first galaxies (shown as
orange objects in the figure) appeared a little later. The purple regions,
and the increasingly connected web-like structure from z ≈ 20 onwards,
represent an important phase change that affected the neutral intergalactic
medium (IGM). Reionisation caused the gas to change gradually from
being wholly neutral (in the dark ages) to fully ionised, and therefore
transparent to optical light.

For simplicity in this chapter we consider the intergalactic gas to be
comprised only of hydrogen, and neglect the smaller helium contribution.
The photoionisation of hydrogen gas requires photons with an energy
E > 13.6 eV.

Which parts of the electromagnetic spectrum correspond to this photon
energy?
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1.1 A timeline of cosmic dawn

A photon energy of 13.6 eV corresponds (via E = hc/λ) to a wavelength
of λ = 91.2 nm. Ionising photons are therefore in the UV, X-ray and
γ-ray parts of the spectrum.

In the remainder of this section we will explore how cosmic dawn and
reionisation proceeded.

1.1.1 The first stars and galaxies
The stars we observe with our telescopes are usually either part of the
Milky Way or of another galaxy. However, the very first (Population III)
stars are thought to have formed before the first galaxies. There are two
reasons for this. The first is that the gradual growth of dark-matter halos
over cosmic time meant that the structures present at these early times
had not yet reached the gas masses of present-day galaxies.

The second reason relates to the physics of star formation. In the
present-day Universe, star formation proceeds via the fragmentation of gas
clouds into smaller clumps, leading to clusters of stars each of which has
an individual mass in the range ∼0.1–150M". However, the fragmentation
process is highly dependent on how the gas radiates away energy and cools.

What properties of the gas affect its cooling rate?

The cooling rate depends on gas density and temperature, but crucially
also on metallicity, which controls the cooling mechanisms that can
operate – see Cosmology Section 11.1.3).

It is the dependence on the presence of metals (elements other than
hydrogen and helium) that differentiates the formation of the first stars
and present-day ones. Population III stars formed from ‘pristine’ gas with
a metallicity, Z ≈ 0. Without heavier elements, the gas could only cool
through less-efficient processes such as H2 cooling, resulting in greatly
reduced fragmentation.

The first generation of stars are expected to have typical masses of
∼103M", which is far greater than even the most massive present-day
stars. Their high mass made them both luminous and relatively short
lived. These stars are thought to have played an especially important role
in cosmic evolution.

Role of first stars in cosmic evolution

• The luminosity of the first stars reionised their surroundings and
produced bubbles of relatively hot gas that were transparent to
radiation.

• The energy released in supernovae at the end of these stars’ short
lives expelled surrounding gas from dark-matter halos. This
expulsion of gas initially acted to slow down the gravitational
collapse of surrounding gas to form further generations of stars,
affecting the eventual properties of the first galaxies.
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Chapter 1 Cosmic dawn

• The supernova explosions also enriched the surrounding gas, which
enabled cooling via line emission from metals to take place. This
meant more fragmentation of star-forming gas clouds could occur,
so subsequent generations of stars had lower masses.

• The remnants of the first stars are expected to be intermediate-mass
black holes, which are one possible seed population for the black
holes that are observed in the centres of both nearby and distant
galaxies (a topic discussed further at the end of this chapter).

The first galaxies started to form after the first generation of stars reached
the end of their lives. As dark-matter halos grew in mass, the mean
temperature of the baryonic gas within the halos increased in accordance
with the virial theorem, leading to higher cooling rates. This produced
reservoirs of cold, dense molecular gas that fuelled increasing star-
formation rates. Figure 1.2 illustrates the changing star- and galaxy-
formation processes across the period of reionisation. As more cooling
processes were able to operate, increasingly high-mass systems could form.

Figure 1.2 The changing processes of star and galaxy formation during

cosmic dawn, with the maximum halo mass increasing with time.

1.1.2 Observing reionisation
One method of testing theories of cosmic dawn is to investigate the
ionisation history of the intergalactic medium (IGM) in order to trace the
influence of stars, galaxies and black holes over time. There are several
powerful techniques to do this, including making inferences about the
timing of reionisation from the CMB angular power spectrum and from
radio measurements of redshifted atomic hydrogen signatures. However, in
this section we will focus on the information that can be obtained from
spectroscopic measurements of quasars.
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1.1 A timeline of cosmic dawn

Online resources: active galaxies

If you are unfamiliar with active galaxies and quasars, or would like a
reminder, you may find it useful to look at the online module
resources on this subject, which are taken from the Stage 2 astronomy
curriculum.

Observations of quasars reveal that the IGM has been fully ionised for a
large fraction of the time that is thought to have elapsed since the epoch of
last scattering (when the CMB was produced). As the light from a distant
quasar travels towards us it is absorbed at particular wavelengths when it
encounters intervening neutral gas, in regions where small clumps of
material have become dense enough to cool out of the ionised IGM. The
absorption creates specific features in the resulting spectrum that provide
information about the intervening gas. A particularly important series of
atomic transitions in hydrogen gas is the Lyman series.

Lyman series

The Lyman series corresponds to transitions in atomic hydrogen
between the n = 1 ground-state energy level and higher energy levels.

Lyman-α emission occurs when an electron decays from n = 2 to
n = 1 and releases a photon with a (rest-frame) wavelength of
λem = 121.6 nm. Conversely, Lyman-α absorption occurs when a
nearby photon is absorbed and excites the electron from n = 1 to
n = 2. Features corresponding to both processes are commonly seen
in quasar spectra.

Lyman-β transitions occur between n = 3 and n = 1, and correspond
to a rest-frame wavelength of 102.6 nm.

Finally, as you read in Cosmology Chapter 11, the Lyman limit is at
91.2 nm, which is the wavelength needed to ionise a hydrogen atom.

At what wavelength would you except to observe the Lyman-α emission
line in the spectrum of a quasar at z = 2?

Observed and emitted wavelengths are related to redshift via
λobs = λem(1 + z), so the line would be observed at λobs = 364.8 nm.

Figure 1.3 illustrates the path of light from a quasar, and how intervening
gas clouds can affect the spectrum (plotted as flux per unit wavelength,
Fλ, versus λobs). In this scenario a Lyman-α emission line is produced from
the emitting gas at the distance of the quasar, and is then redshifted as the
light travels towards Earth. Lyman-α absorption then also occurs when the
light passes through hydrogen gas clouds at particular intermediate
distances, creating observed dips in flux at different wavelengths from the
emission line (which was produced at the quasar itself).
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Chapter 1 Cosmic dawn

Figure 1.3 The path of light from a distant quasar to the Earth, resulting in

a series of absorption features in the quasar spectrum from clouds at different

distances. The plots show the spectrum as viewed at each location.

Each absorption feature will be redshifted by a different amount as the
light travels to Earth, because of the different distances of intervening
hydrogen clouds. This leads to a rich set of features in the quasar’s
spectrum known as the Lyman-α forest. Figure 1.4 shows an example
quasar spectrum for a very high-redshift system, with the Lyman-α
emission line identified. The many narrow lines to the left of this feature
are the Lyman-α forest.

Figure 1.4 A typical high-redshift quasar spectrum showing Lyman series

transitions and a Gunn–Peterson (G–P) trough, with the latter feature caused

by the presence of neutral gas over a substantial redshift range in the IGM.

The schematic above the spectrum shows the corresponding regions through

which the light passed, with regions of neutral gas shown in paler blue/purple.
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1.1 A timeline of cosmic dawn

The most interesting feature for studying cosmic dawn in Figure 1.4 is the
region of near-zero flux to the left of the Lyman-α line labelled as the
Gunn–Peterson trough. This feature indicates that the light passed
through an extended region of neutral (un-ionised) gas in the IGM at high
redshifts. By comparing the wavelength range of the Gunn–Peterson
(G–P) trough observed for quasars at different redshifts it is possible to
determine when the period of reionisation ended and the intergalactic
medium was fully ionised.

Figure 1.5 shows a series of high-redshift quasar spectra, presented in order
of decreasing redshift. Those at z > 6 show a G–P trough to the left of
their Lyman-α line, while those at lower redshifts show a forest of lines, to a
greater or lesser extent, instead of a flat trough. These quasar observations
therefore show that the IGM starts to contain a sizeable quantity of
neutral gas above z ≈ 6, which marks the end of the period of reionisation.

Figure 1.5 A sample of high-redshift quasar spectra, arranged in order of decreasing redshift. The G–P

troughs and Lyman-α lines are also shown, where appropriate.
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Chapter 1 Cosmic dawn

1.1.3 Sources of reionisation
The observational methods described in the previous section give us a firm
idea that reionisation was complete by z ≈ 6. The two candidates for
reionising most of the gas in the Universe during this period are the
growing stellar populations within galaxies, and quasars (which derive
their luminosity from accretion of matter onto a central black hole). We
will now consider the roles of these two sources of photons, following
arguments presented by Ryden (2017).

We will consider the reionisation process in a co-moving volume at cosmic
dawn. A co-moving volume of 1Mpc3 refers to a region that was smaller at
an earlier point in history, but will expand to a volume of 1Mpc3 at the
present day. (Recall the definition of co-moving distances from Cosmology,
Chapters 3 and 5.) We can therefore assume that a typical such region
contained the same number of baryons as it does in the present-day
Universe, although the number density was historically higher, since the
true physical volume was smaller at that earlier time.

At the present day, the co-moving volume has a baryon number density,
nb,0, of

nb,0 =
Ωb,0ρc,0
mp

≈ 7.4× 1066Mpc−3

where Ωb,0 and ρc,0 are the present-day values of the baryon density
parameter and critical density respectively, and mp is the proton mass.
Therefore a typical region of co-moving volume 1 Mpc3 will contain
≈ 7.4× 1066 baryons at cosmic dawn.

Next we can estimate how many ionising photons would be required to
ionise such a region. The simplest assumption is that we just need one
photon capable of ionisation for each baryon. However, we need to account
for the fact that not all photons are able to escape from the galaxy in
which they are produced – the photon escape fraction, fesc, is an
estimate of the proportion that do. The number of ionising photons, Nγ,
needed to ionise a region of co-moving volume Vcomov is therefore

Nγ =
nb,0Vcomov

fesc
(1.1)

The following example estimates the number density of massive stars
needed to fully reionise a region of intergalactic gas.

Example 1.1

A co-moving volume of 1000Mpc3 at z = 8 contains a number of galaxies,
each of which is continually forming stars. The massive stars within the
galaxies each produce ionising photons at a rate of Ṅγ = 5× 1048 s−1.
Answer the following questions, assuming that the escape fraction of
photons from the galaxies is fesc = 0.2, that the stellar population in each
galaxy is constant and that the stellar populations have been producing
photons for 600My.
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1.1 A timeline of cosmic dawn

(a) Estimate the number of massive stars that must be radiating within
the volume in order to fully reionise the intergalactic gas.

(b) If galaxies at z = 8 each contain 20 000 massive stars (a similar
number to the Milky Way), then what density of galaxies per
co-moving cubic megaparsec would be needed to ionise all of the gas?

Solution

(a) The number of baryons to ionise in the intergalactic gas, Nb, is given
by the present-day baryon density multiplied by the co-moving
volume:

Nb = nb,0Vcomov = 7.4× 1066Mpc−3 × 1000Mpc3

= 7.4× 1069

Accounting for the escape fraction given, and using Equation 1.1, the
number of ionising photons that need to be produced to ionise these
baryons is

Nγ =
Nb

fesc
= 3.7× 1070

Individual massive stars produce ionising photons at a rate
Ṅγ = 5× 1048 s−1. Given that the stellar population in each galaxy is
assumed to be constant, the total number of ionising photons
produced is

Nγ = NstarsṄγt

where Nstars is the number of massive stars within the volume and t is
the period over which the photons are produced (in this case 600My).
Rearranging for Nstars and substituting in values for the other
quantities, we find:

Nstars =
Nγ

Ṅγt
≈ 390 000

(b) In a co-moving volume of 1000Mpc3 it would require
390 000/20 000 ≈ 20 present-day Milky-Way-like galaxies to fully
reionise the interstellar gas. This is around 0.02 galaxies per
co-moving cubic Mpc.

Now shifting our focus to quasars, the rate of ionising photon production
for an individual galaxy of this type depends on its bolometric
luminosity (the luminosity across all wavelengths) and the shape of its
spectrum, which determines the fraction of the total number of photons
that have energies in the UV and X-ray parts of the spectrum, i.e. those
that are able to contribute to ionisation. This rate can be approximated
for an individual quasar of luminosity L as:

Ṅγ ≈ 3× 1056 s−1

(
L

1013 L"

)
(1.2)
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Chapter 1 Cosmic dawn

It is thought that the escape fraction for quasar radiation may be
considerably higher than for stars, perhaps as high as fesc ∼ 1 for the most
luminous quasars. In the following exercise you can make a rough estimate
of the number density of quasars needed for reionisation.

Exercise 1.1

(a) Given a typical quasar bolometric luminosity of L = 1039W and
photon escape fraction fesc = 1, calculate the number of luminous
quasars, NQ, needed to reionise a co-moving volume of 1000Mpc3.
Assume that quasars produce photons over a time period of 600My
and that the number of quasars remains constant.

(b) Hence determine the co-moving number density of quasars needed for
quasars to reionise a 1000Mpc3 co-moving volume (neglecting any
contributions from the massive stars).

Exercise 1.1 and Example 1.1 suggest that the density of quasars needed to
carry out reionisation alone is much smaller than for galaxies. However,
luminous quasars are much rarer than ordinary galaxies, and so it is now
thought that massive stars (and not quasars) are responsible for most of
the reionisation at cosmic dawn. In the remainder of the chapter you will
learn about direct observations of these early galaxies and black holes.

1.2 Finding the earliest galaxies
Telescope technology has now advanced to the point where we can directly
observe galaxies at distances so large that we are seeing them at around
the time of cosmic dawn, when it is thought that the first galaxies formed.

1.2.1 High-redshift galaxy surveys
In order to study the earliest galaxies it is necessary to first detect them in
our images and then to distinguish them from the large numbers of
similarly faint, but closer and less-luminous galaxies, which are found in
the most sensitive (deepest) observations. Hence these studies require
powerful telescopes. Figure 1.6 highlights a small number of very
high-redshift galaxies found within a JWST deep-field survey image.
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1.2 Finding the earliest galaxies

Figure 1.6 Examples of very high-redshift galaxies identified in deep JWST

observations and confirmed with spectroscopic measurements. In each of the

right-hand boxes the distant galaxy is the object at the centre of the image.

The only way to be certain of a galaxy’s distance is to measure its redshift
precisely from a spectrum, but this requires long observations and so
cannot be done for all of the hundreds of faint galaxies in a deep-field
image. However, photometric redshifts can be estimated based on
measurements of galaxy colours (i.e. comparing their brightness through
different telescope filters).

Figure 1.7 shows a histogram of these photometric redshift estimates for
galaxies from the same survey as shown in Figure 1.6, and demonstrates
that only a small number of the galaxies have redshifts that could place
them well into the cosmic dawn era. The space density of galaxies beyond
z ≈ 8 is not yet well determined, but JWST is expected to make major
progress in this area.
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Chapter 1 Cosmic dawn

Figure 1.7 The distribution of estimated redshifts and lookback times for a

typical deep field observed by JWST.

The next section explains in more detail how the colours of galaxies are
used to narrow down the possibilities when trying to find the relatively
rare examples that are at the highest redshifts.

1.2.2 The Lyman-break method
The primary method used to identify candidate distant galaxies is known
as the Lyman-break method (or the dropout method). This is a
selection method applied to deep surveys, typically of small areas of sky in
directions away from the plane of the Milky Way.

The physics behind the Lyman-break method is related to the properties
of Lyman series emission and absorption transitions. The Lyman break
is a prominent feature in the spectra of typical star-forming galaxies. It is
caused by absorption of the galaxy’s radiation by gas, both within that
same galaxy and in intervening regions at lower redshifts.

At photon energies below the Lyman limit (i.e. wavelengths longer than
λem = 91.2 nm) only specific wavelengths of light are absorbed. These
interactions correspond to the Lyman-α, -β and higher transitions, and
create ‘dips’ in a galaxy spectrum. Above this limit (i.e. at shorter
wavelengths) photons will ionise the gas and so all wavelengths can be
absorbed, which leads to a large drop in the galaxy flux that escapes.

Figure 1.8 shows the spectrum of a distant galaxy, with a sharp drop in
flux at a characteristic wavelength corresponding to the Lyman break. All
galaxy spectra contain this prominent feature, which will be redshifted
according to the galaxy’s distance from Earth. The Lyman-break method
involves searching for galaxies at a particular redshift by comparing images
made using telescope filters of different wavelengths.

14



1.2 Finding the earliest galaxies

If a galaxy is observed with a filter corresponding to a wavelength range
above the (redshifted) location of the Lyman break then it will be bright,
as is the case for the the image shown above the ‘filter 2’ range in
Figure 1.8. If the same galaxy is observed with a filter below the break
then it will be very much fainter or absent, as you can see in the image
corresponding to the ‘filter 1’ range. The aim of the method is to find
galaxies whose Lyman break is close to the boundary between the filters.

Figure 1.8 Images of a typical star-forming galaxy using three telescope

filters, compared with a full galaxy spectrum. Comparing the brightness of the

three images allows a rough estimate of the galaxy’s redshift because of the

observed absence of emission in the image from the lowest-wavelength filter.

If the sharp drop in flux in Figure 1.8 corresponds to the Lyman break,
what is the approximate redshift of this galaxy?

The observed wavelength of the break is λobs ≈ 300–350 nm. Using
λobs = λem(1 + z) with λem = 91.2 nm, the galaxy redshift is z ≈ 2.3–2.8.

As we consider objects at increasingly high redshift, the Lyman break
shifts towards longer wavelengths and it becomes necessary to observe in
the near-infrared part of the spectrum. JWST was designed to enable this
method to be applied to find galaxies with much higher redshifts.

Would you expect the G–P trough to be relevant for galaxies as well as
quasars and, if so, how would this affect the Lyman-break method?

15



Chapter 1 Cosmic dawn

Yes, for galaxies at redshifts when the Universe was not fully ionised,
i.e. z ≈ 6, absorption due to intervening neutral gas (which produces the
G–P trough for quasars) should still occur. This would move the
rest-frame wavelength of the observed break in the spectrum from
91.2 nm (the Lyman break) to 121.6 nm.

Figure 1.9 shows the spectra of two very high-redshift galaxies measured
by the JWST NIRSpec instrument, which were first identified via the
dropout method. Due to the galaxies’ high redshifts, the spectral break
occurs at the Lyman-α redshift (corresponding to a wavelength of
121.6 nm) and not at the Lyman limit, as explained above.

Figure 1.9 The spectra of two z > 10 galaxies: (a) GS-z10-0 and (b) GS-z11-0. The lower panels show the

signal-to-noise ratio (S/N) of the detected emission against position, in a slice across the source. There is a

sharp drop in S/N to the left of the rest-frame Lyman-α wavelength (marked by vertical red lines in the

top panels).

The sharp breaks observed between wavelengths of 1 and 2 μm in both
cases correspond to absorption at wavelengths shorter than the rest-frame
Lyman-α line. By comparing the rest-frame (emitted) wavelengths with
the observed wavelengths, the redshifts of GS-z10-0 and GS-z11-0 are
confirmed to be z ≈ 10.4 and z ≈ 11.6, respectively. The light we’re
measuring from these galaxies was produced when the Universe was only
∼400 million years old. JWST is being used to search for galaxies at
redshifts even greater than these two examples.
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1.2 Finding the earliest galaxies

1.2.3 Lensing effects on distant galaxies
Another powerful method for finding and studying the most distant
galaxies relies on gravitational lensing, which is the amplification of
light from a distant object along a path that passes close to a nearer
massive object. The amplified brightness of lensed galaxies means that we
are able to observe fainter, more distant systems whose unamplified light
would be undetectable.

Some of the highest-redshift galaxies so far detected by JWST are known
to be lensed. The Lyman-break method can still be applied to such
galaxies because lensing affects all wavelengths equally, and so does not
alter a galaxy’s spectrum.

The effects of lensing are sometimes obvious. For example, lensing can lead
to galaxy images that are duplicated or highly distorted (see the next
chapter for more information). However, sometimes the effects of lensing
are subtle, and if not identified or corrected for they can lead to bias in
estimates of galaxy properties or luminosity functions at different redshifts.

1.2.4 Properties of the highest-redshift
galaxies

Measurements of how redshift influences the properties of galaxies
(including colours, galaxy luminosity functions, metallicities,
star-formation rates and stellar population measures) have been used to
develop modern theories of galaxy evolution, and to test numerical
simulations. Figure 1.10 shows the results of one study, which examines
how the fractions of different types of galaxies evolve with redshift and
galaxy mass. Panel (a) differentiates between spiral-like and elliptical-like
galaxies across three redshift ranges, whereas panel (b) compares galaxies
on the basis of whether or not their morphology has been disturbed by
interactions with other galaxies, such as mergers. In each case the
horizontal axis shows the stellar mass of the galaxies.
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Chapter 1 Cosmic dawn

Figure 1.10 The evolution of galaxy structure with redshift and galaxy mass, as measured by JWST .

The redshift ranges for the samples increase from left to right across the three columns. Panel (a) compares

disc-dominated (e.g. spiral-like) and bulge-dominated (e.g. elliptical-like) galaxies, and panel (b) compares

galaxies with disturbed and undisturbed morphologies.
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1.2 Finding the earliest galaxies

Over what redshift range does the galaxy structure appear to change
most dramatically in Figure 1.10, and in what way?

For both panels (a) and (b) there is relatively little difference between
the proportion of different galaxy types in the z = 0–1 and z = 1–3
plots, but a much larger difference in these proportions is seen in the
final z = 3–6 plot. The fraction of spiral-like galaxies becomes very high
at all masses at the highest redshifts, where the fraction of disturbed
galaxies dominates over a wider range of galaxy masses.

Overall the results of these types of galaxy morphological study are in
good agreement with models of galaxy evolution, in which galaxy mergers
occur frequently at higher redshifts, and spiral structure disappears
(preferentially in the most massive systems) as galaxies grow via mergers.

Galaxy evolution models also predict that galaxy luminosity functions
(see Cosmology Chapter 11) will change significantly with time. Measuring
the galaxy luminosity function provides a census of the population of
galaxies at each redshift. Figure 1.11 shows the evolution of the UV-
luminosity function of galaxies, out to the highest redshifts for which
reliable information is available to date. Note that these are plotted as a
function of magnitude, so that the lowest luminosities are to the right in
the plot.

Figure 1.11 UV-luminosity functions for high-redshift galaxies, showing

evolution of the overall number density.
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It is evident that the shape and the normalisation of the UV-luminosity
function – namely the overall scaling in the vertical direction – changes
with time. The number density of galaxies (within the range it has been
possible to measure) is much lower at z ∼ 8 than at z ∼ 4, but also the
relative proportions of brighter and fainter galaxies has changed. The
shape of the function is flatter at lower redshift, so that there is a higher
proportion of more luminous galaxies (i.e. to the left of the plot) relative to
fainter ones. This is as expected if the most massive and luminous galaxies
were formed gradually over many billions of years via mergers.

In Example 1.1 we estimated that a galaxy number density of about
0.02Mpc−3 is needed to reionise the Universe at z = 8. The luminosity
function plotted in Figure 1.11 at z ∼ 8 shows that the number density of
galaxies starts to reach this value at the very right-hand side of the plot,
corresponding to the lowest-luminosity galaxies (much less luminous than
the Milky-Way-like galaxy we used for the reionisation estimate in the
earlier example).

This might suggest it would have been difficult for galaxies at z = 8 to
produce enough radiation to reionise the gas. However, more detailed
reionisation calculations indicate that the galaxy population at z ∼ 8
would be sufficient, provided the observed steep slope of the luminosity
function continues to fainter luminosities than are shown in Figure 1.11
(because they are too faint to have been observed at this distance). It is a
key goal of ongoing JWST research to extend the current measurements of
galaxy luminosity functions out to even higher redshifts, to the very
earliest galaxies.

1.3 The earliest black holes
Observations of quasars and high-redshift galaxies show that supermassive
black holes (SMBHs) have been present since the early Universe. This
raises the interesting question of when and how the SMBHs in galaxy
centres formed. In this section we will examine correlations between the
properties of SMBHs and their host galaxies, and what these connections
tell us about how both parties evolve. We will also explore theories of how
the first such black holes formed.

1.3.1 Black hole activity across cosmic time
The evolution of black holes can be investigated by studying quasars and
active galactic nuclei (AGN) at optical, infrared, X-ray and radio
wavelengths. Although we now believe that all galaxies have a central
black hole, it is in AGN that we see the most direct evidence for their
presence, via the large amounts of radiation associated with the infall of
gas onto the black hole.
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1.3 The earliest black holes

Figure 1.12 shows how the number density of quasars, nQ (selected below a
certain UV absolute magnitude, MUV < −23) evolves with redshift, based
on careful measurements of the quasar luminosity function at different
redshifts. The black diagonal line is a power-law model fitted to the
high-redshift data, and has the form:

nQ ∝ 10−0.78z (1.3)

Figure 1.12 The evolution of the number density of quasars of MUV < −23

with redshift.

Exercise 1.2

Use Figure 1.12 and Equation 1.3 to answer the following questions.

(a) Summarise, in a few sentences, how quasar number density changes
with redshift, and comment on how the present-day density of quasars
compares with the density at the end of cosmic dawn.

(b) Estimate the value of nQ at z = 8.

(c) Compare your answer to part (b) with the results of Exercise 1.1
(namely that nQ ≈ 5× 10−6Mpc−3 is needed for reionisation at
z = 8), and comment on whether the observed quasar population
evolution suggests they played an important role in reionisation.

The evolution of the quasar population is one piece of information about
how black holes change over cosmic time. However, to study how black
holes evolve in galaxies we need methods to estimate their masses, rather
than just their (easier-to-measure) luminosities.
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1.3.2 Measuring black-hole masses
One simple way to estimate the masses of black holes is to assume that
quasars are radiating at the Eddington limit – the maximum luminosity
that can be radiated by an accreting black hole of a particular mass. This
limit is reached when the outward radiation pressure from the luminous
source balances the gravitational inflow of mass that fuels the black hole.

The main source of an active galaxy’s radiation is the conversion of a
portion of the gravitational potential energy released by the gas that is
falling into a central black hole. The change in gravitational potential
energy ΔEacc of a parcel of gas of mass m, accreting from infinity to the
event horizon is:

ΔEacc =
GMBHm

RS
=

1

2
mc2 (1.4)

where MBH is the black-hole mass and RS = 2GMBH/c
2 is its

Schwarzschild radius.

In order words, the release of gravitational potential energy could make
available up to half of the rest-mass energy of the accreted gas. By
comparison, the release of rest-mass energy by nuclear fusion from
hydrogen to helium (e.g. as in the core of Sun) liberates only
ΔE = 0.007mc2, so less than 1% of the rest-mass energy of the gas
undergoing fusion. Accretion is therefore a very powerful energy source!

The accretion rate is defined as the time derivative of infalling mass,
ṁ = dm/dt. Since the available energy depends only on the accreting
mass, the accretion rate determines the AGN luminosity L, so that

L =
ΔE

Δt
= ηṁc2 (1.5)

where η is the efficiency of the conversion of infalling mass into radiation,
which is typically assumed be ∼0.1 (i.e. 10% of the infalling mass is
converted to radiation, with the remainder accreted by the black hole).

The outward-acting force, Frad, due to the radiation pressure on a region
of infalling mass at a distance R from the radiation source is

Frad =
LσTm

4πR2cmp
(1.6)

Here σT is the Thomson cross-section, and the gas is assumed to be pure
hydrogen so that m/mp provides an estimate of the number of electrons
undergoing scattering by the radiation.

We can now equate this outward force with the inward gravitational force
acting on the mass to determine the conditions under which the forces
balance, and the accretion rate cannot increase:

LσTm

4πR2cmp
=

GMBHm

R2
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1.3 The earliest black holes

Rearranging for L leads to the definition of the Eddington luminosity,
which cannot be exceeded by a spherically symmetric accreting system.

Eddington luminosity

LEdd =
4πGMBHmpc

σT
(1.7)

The only non-constant parameter in Equation 1.7 is the black-hole mass,
MBH. The relation therefore provides a simple way to obtain a rough
estimate of the black-hole mass of a quasar if it is assumed to be radiating
at (or near to) the Eddington luminosity. This is a commonly used
assumption, but it is important to bear in mind that not all active galaxies
will be accreting at this rate, which means that mass estimates made this
way can have a large uncertainty.

A more direct method of estimating black-hole masses uses spectroscopy to
measure the width of emission lines originating in an AGN’s broad line
region – an area of gas clouds located close to the black hole. The
linewidths are caused by Doppler broadening due to the rapid orbits of the
gas clouds, and so the virial theorem can be used to relate the velocities
measured from the emission lines to the central mass controlling the cloud
motions.

This method requires more information than the Eddington luminosity
calculation, but does not rely on the assumption that the black hole is
accreting at the maximum rate. Indeed, when black-hole mass is measured
it this way, it is then possible to compare the observed AGN luminosity
with the Eddington luminosity to estimate the mass accretion rate.

1.3.3 The galaxy–black-hole connection
It is possible to make accurate measurements of black-hole masses in the
local Universe. This allows us to establish tight correlations between the
mass of a central black hole, MBH, and galaxy properties such as the
near-infrared (K-band) luminosity of the galaxy bulge, LK, and velocity
dispersion, σv. (As stated in Cosmology Chapter 9, σv is the typical speed
in the radial direction of a group of objects, such as the galaxies in a
cluster or, in this case, the stars in a galaxy.) Figure 1.13 shows the
relationships between MBH and the other two properties.
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Figure 1.13 The tight relationship between black-hole mass and (a) K-band luminosity, and (b) velocity

dispersion. Each point is an individual galaxy and is categorised by its morphology. Some better-known galaxies

have been labelled in each plot.

The best-fitting relationships for MBH–LK and MBH–σv (as plotted in the
figure) are:

MBH

109M"
= 0.54

(
LK

1011LK,"

)1.2

(1.8)

MBH

109M"
= 0.31

( σv
200 km s−1

)4.4
(1.9)

Here, LK" is the K-band luminosity of the Sun, and masses and
luminosities are in solar units.

A further important relationship is observed between the mass of the black
hole and the mass of the galaxy bulge (the bulge mass), where the latter
encompasses the entire galaxy for ellipticals and the central region
(excluding the spiral arms) for a spiral galaxy. The relationship is
expressed as

MBH

109M"
= 0.49

(
Mbulge

1011M"

)1.2

(1.10)

The following example explores how these relationships can be applied in
order to understand whether a particular galaxy and its black hole are
typical or unusual in terms of their relative masses.
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1.3 The earliest black holes

Example 1.2

A galaxy has a measured K-band luminosity LK = (8.5± 0.6)× 109 LK,",
a velocity dispersion σv = 110± 5 km s−1, and a bulge mass
Mbulge = (7.1± 0.5)× 109M".

(a) Use Equations 1.8 and 1.9 to make two estimates of the central
black-hole mass for this galaxy, along with their associated errors.
Comment on whether these estimates give consistent results.

(Hint : if a function f ∝ xb then the fractional uncertainty in the
function is Δf/f = bΔx/x.)

(b) Take the average of the two black-hole mass estimates from part (a)
and calculate the associated error.

(Hint : if f = (x+ y)/2 then Δf =
√

(0.5Δx)2 + (0.5Δy)2.)

(c) Using the result from part (b), predict the bulge mass for this galaxy.
Comment on whether this is consistent (within the uncertainties) with
the estimate for Mbulge provided in the question.

Solution

(a) Substituting in the provided value of LK into Equation 1.8 gives a
black-hole mass estimate of:

MBH = 0.54

(
8.5× 109 LK,"

1011 LK,"

)1.2

× 109M" = 2.80× 107M"

The luminosity has a fractional uncertainty of ΔLK/LK ≈ 0.071, so:

ΔMBH = 1.2× 0.071× 2.80× 107M" = 0.20× 107M"

Similarly, the second estimate of black-hole mass comes from
substituting in the provided value of σv into Equation 1.9:

MBH = 0.31

(
110 km s−1

200 km s−1

)4.4

× 109M" = 2.23× 107M"

The velocity dispersion has fractional uncertainty of Δσv/σv = 0.045,
so in this case

ΔMBH = 4.4× 0.045× 2.23× 107M" = 0.45× 107M"

Hence the two estimates are consistent within the experimental error
(the maximum acceptable value from the σv calculation agrees with
the minimum acceptable value from the LK calculation).

(b) The average black-hole mass from the two estimates is

〈MBH〉 = 2.5× 107M"

Using the hint provided, the associated error is

Δ〈MBH〉 =
√

(0.5× 0.2)2 + (0.5× 0.4)2 ×107M" ≈ 0.2×107M"
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(c) Rearranging Equation 1.10 for Mbulge and using MBH = 〈MBH〉 from
part (b) gives:

Mbulge =

(
2.5× 107M"
0.49× 109M"

)1/1.2

× 1011M" = 8.4× 109M"

Now using the same error propagation formula as in part (a), the
error on the bulge mass estimate, ΔMbulge/Mbulge, is given by:

ΔMbulge

Mbulge
= (1/1.2)× ΔMBH

MBH
= (1/1.2)× 0.2× 107M"

2.5× 107M"
≈ 0.1

The lowest value within our estimated bulge mass range is therefore
Mbulge−ΔMbulge = 8.4×109M"−0.1×(8.4×109M") = 7.6×109M".
The highest value within the uncertainty range of the observational
measurement of Mbulge given in the question is
Mbulge +ΔMbulge = 7.6× 109M".

We have therefore shown (with some effort!) that the black-hole mass
estimates from part (a) imply a bulge mass that is consistent with the
value given in the question, to within the quoted uncertainties.

Example 1.2 considered in some detail how different measurements relating
to galaxy and black-hole properties can be compared. Try the following
exercise to practise some similar calculations.

Exercise 1.3

Table 1.1 provides the measured bulge and black-hole masses of three
nearby galaxies: A, B and C. For each galaxy, use the measured bulge
mass to predict the black-hole mass (and its uncertainty) using
Equation 1.10. Hence determine which of the galaxies have properties that
are consistent with the relation and which appear to deviate from it.

Table 1.1 A set of observed galaxy bulge and black-hole masses.

Galaxy measured Mbulge/M" measured MBH/M"
A (4.4± 1.6)× 109 (6.6± 0.9)× 106

B (4.5± 1.7)× 1010 (6.0± 1.4)× 106

C (3.6± 1.5)× 108 (1.1± 0.5)× 106

There are two popular explanations for the relationships discussed in this
section. One is that the galaxy-feedback processes we discussed in
Cosmology Chapter 11 act to keep the galaxy bulge and black-hole masses
closely matched, with a cycle of black-hole and stellar outflows
simultaneously suppressing both star formation and the accretion that
controlled further black-hole growth. An alternate hypothesis is that
repeated galaxy and black-hole mergers help to average out mismatches
and tighten the correlations.
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1.3 The earliest black holes

The tight relationships between black-hole mass and host-galaxy properties
in the local Universe give us a way to investigate how black holes may have
grown. Figure 1.14 shows the local relationship between black-hole mass
and stellar mass, together with estimated properties for two high-redshift
samples of black holes in active galaxies.

Figure 1.14 Black-hole mass and stellar mass for local galaxies (small red

circles and best-fit line) and high-redshift samples (blue squares and purple

triangles).

How do the properties of the high-redshift black holes compare with the
local galaxies, and what might this suggest about black-hole evolution?

The purple triangles and blue squares are significantly above the
low-redshift (local galaxy–black-hole) relationship, indicating that the
high-redshift black holes are overmassive relative to the quantity of stars
in their host galaxy. This may suggest that the black holes grow earlier
than much of the stellar content of galaxies.

It is important to note that there are some caveats on measurements of
black-hole and galaxy properties at high redshifts. The biggest challenge is
what are known as selection effects: the objects that are easiest to
observe are typically the brightest galaxies or AGN at that redshift, which
means they may not be typical, and could be giving a somewhat biased
view. At the time of writing, JWST is making many new discoveries in
this area, and so we will learn more over the next few years.
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Chapter 1 Cosmic dawn

1.4 Growth of black holes in the
early Universe

The formation of SMBHs in galaxy centres is a long-standing puzzle in
astronomy. Stellar-mass black holes (i.e. those with masses ∼10–150M")
are thought to be produced in supernova explosions at the end of the lives
of massive stars. There is no single, fully understood process to produce
black holes with masses ∼106–109M".

However, observations show that such black holes are present less than a
billion years after the big bang, and that galaxies have SMBHs at their
centres by the time most of their stars have formed. In this section we will
explore the possible routes to grow SMBHs in the early Universe, and how
they compare with observations.

1.4.1 How fast can black holes grow?
There are two possible routes for producing an SMBH: either it is ‘born’
supermassive or it originated as a much smaller black hole (known as a
black-hole seed) and grew over time. The two ways that a black-hole
seed can grow are by accreting matter that falls in or by merging with
other black holes. Let’s consider each idea in turn.

Accretion
The accreted material that crosses the event horizon of a black hole
increases the mass of the black hole over time. The following example
explores what accretion rates would be needed to grow SMBHs in the early
Universe.

Example 1.3

Consider the growth of a black hole under the assumption that accretion is
limited by the requirement not to exceed the Eddington luminosity.
Assume η = 0.1.

(a) Write down an equation relating black-hole mass and accretion rate.

(b) Use this equation to derive an expression for the time t for a black
hole to grow from an initial seed mass M1 to an observed mass M2.

(c) Calculate the times taken for two seed black holes with masses
(i) 10M" and (ii) 1000M" to each grow to final masses of 106M"
(i.e. similar to the Milky Way’s black hole) and 109M".

Solution

(a) In the case of accretion limited by the Eddington luminosity, the
luminosity produced by accretion (Equation 1.5) and the
Eddington luminosity (Equation 1.7) are the same. Therefore:

ηṁc2 =
4πGMBHmpc

σT

28



1.4 Growth of black holes in the early Universe

This equation can be written as an expression for ṁ:

ṁ = k1MBH (1.11)

where k1 = 4πGmp/(ηcσT) = 7.03× 10−16 s−1 combines all the
constant terms.

(b) In order to derive an expression for a timescale from Equation 1.11 we
need to think about how the accreting mass and the black-hole mass
are related. The accretion rate is the rate at which matter falls into
the black hole. The rate at which the black hole grows, ṀBH, is the
rate at which mass and energy cross the event horizon. But typically
the kinetic energy of the infalling matter can be neglected, therefore:

ṀBH =
dMBH

dt
= ṁ

and – using Equation 1.11 – we end up with a simple differential
equation involving only MBH:

dMBH

dt
= k1MBH (1.12)

We can now rearrange to find an expression for the infinitesimal time
interval dt:

dt =
1

k1

dMBH

MBH

and so the time taken for the mass to grow from M1 to M2 will be

t =
1

k1

∫ M2

M1

dMBH

MBH
=

1

k1

[
lnMBH

]M2

M1
(1.13)

(c) The calculated time intervals for each of the scenarios considered, as
determined using Equation 1.13, are given in Table 1.2.

Table 1.2 Calculated time intervals for SMBH growth.

Seed M1/M" M2/M" t/y

(i) 10 106 5.2× 108

10 109 8.3× 108

(ii) 1000 106 3.1× 108

1000 109 6.2× 108

Example 1.3 shows that, with Eddington-limited accretion, it takes
timescales in the region of a billion years to grow SMBHs comparable to
the largest, billion-solar-mass examples that have been observed. This
timescale is comparable to (or larger than) the age of the Universe when
the earliest such black holes are observed.

The example gives us insights into what models of black-hole growth are
realistic. The simplest idea of growth via accretion from small
(stellar-mass) black holes is compatible with the properties of the Milky
Way’s black hole (MBH ∼ 4× 106M"). However, it is far from being
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realistic for the SMBHs that are observed at high redshifts. Maintaining
uniformly high accretion rates for periods of hundreds of millions to billions
of years during the cosmic dawn era is thought to be incompatible with
typical environmental conditions at that time: a range of feedback effects
(from stellar explosions to the environmental impacts of AGN/SMBH
activity) are expected to limit the supply of fuel onto the black hole. Thus
explaining SMBHs at high redshifts remains an unsolved problem.

Part of the solution may be that accretion at rates higher than the
Eddington rate (super-Eddington accretion) could be possible for short
periods. For example, super-Eddington accretion might occur in situations
where the geometry of the inflow is not spherical, and this may mean that
a small proportion of black holes were able to grow to ∼109M" over the
first billion years of the Universe’s history.

Mergers
It is plausible to imagine that if many stellar-mass black holes were present
in star clusters during early star formation, then they might merge to form
more massive black holes.

How many 100M" black-hole seeds would need to merge to make a
109M" black hole (of the type thought to be present in z = 6–7
quasars)?

This would require the merger of 107 black-hole seeds.

The requirement for tens of millions of mergers makes it hard to explain
the presence of ∼109M" black holes in z = 6–7 quasars. This is because
during the formation of Population III stars, the lack of fragmentation
meant that clusters of tens of millions of stars should not form at all.
During the formation of later generations of stars, where larger numbers
are expected to form in a given cluster, only a small fraction of stars would
be sufficiently massive to end their lives as black holes. There is a possible
role, however, for rapid black-hole mergers in early protogalaxies to create
black-hole seeds of intermediate masses up to ∼104M".

In the next section we will consider the most popular current theories for
the formation and growth of black holes, as well as how it is hoped they
can be tested in future.

1.4.2 Black-hole seeds – theory and
observations

The simplest explanation for the origin of the black holes found in the
centres of present-day galaxies is that they formed in supernova explosions
at the end of the lives of Population III stars. Other possibilities include
invoking primordial black holes, created immediately after the big
bang, and black-hole seeds formed via direct collapse, in which a massive
gas cloud (e.g. 104–105M") collapsed into a black hole without first
forming stars.
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1.4 Growth of black holes in the early Universe

Figure 1.15 illustrates two competing theories for the origin of
galaxy-centre SMBHs: a ‘heavy-seed’ model, in which the black holes
formed with masses ∼104M", and a ‘light-seed’ model where they formed
with masses ∼100M". In both cases, mergers and accretion must together
grow the black holes to reach their present-day mass.

Figure 1.15 A schematic of two popular models for the origin of supermassive black holes in present-day

galaxies: heavy seeds from collapse of large gas clouds (left), and light seeds formed from Population III

stars (right).

This diagram suggests that the lowest-mass galaxies are a good place to
look to test these theories of SMBH formation, because in heavy-seed
models we might expect that some fraction of low-mass galaxies would
never grow a SMBH (see the percentages given in the boxes at the bottom
of each column of Figure 1.15). However, it is observationally difficult to
identify black holes of ∼105M".
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Another route is to examine black-hole masses at the highest possible
redshifts, for which JWST is very well suited. Figure 1.16 illustrates the
possible growth histories (see the various coloured regions) for a candidate
black hole that was recently identified in a galaxy at z ≈ 11. Its black hole
has been estimated via emission linewidths to have a mass of M ∼ 106M".
If these results are correct, then the black hole is similar in mass to that of
the Milky Way’s central black hole, but exists at a time when the Universe
was around 450My old – around 3% of its current age!

At the time of writing (2023),
this new result is being debated
by the astronomical community.
We include it here as an
example of how astronomers can
investigate black-hole growth
with JWST.

Figure 1.16 Growth histories for a candidate 106 M# black hole at z = 11.

Use the following exercise to consider what GN-z11 may be telling us
about early black-hole growth, if its inferred mass is correct.

Exercise 1.4

(a) If the earliest stars formed at z < 20 then, based on Figure 1.16, is it
possible that the GN-z11 black hole formed from a stellar remnant?

(b) Could the black hole in GN-z11 evolve into a 109M" black hole at
z ∼ 6–7 (such as those found in some quasars shown in the figure)?

Exercise 1.4 and Figure 1.16 point to a potential role for super-Eddington
accretion in helping to build the most massive black holes observed at high
redshifts. The circumstances in which the Eddington rate can be exceeded
are uncertain, and the subject of very active research.
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An exciting future prospect to distinguish between different black-hole
seed models is through gravitational wave observations. The gravitational
wave detections by LIGO and the Virgo interferometer (see Cosmology
Chapter 3) have revealed the mergers of black holes of (interestingly high)
stellar masses in nearby galaxies. The future European Space Agency’s
Laser Interferometer Space Antenna (LISA) mission is designed to detect
gravitational waves from merging supermassive black holes, over a large
range of redshifts. LISA should enable us to reconstruct the histories of
how massive black holes merged over time, back to the point when the first
black holes became supermassive, and so reveal what the seeds for those
first SMBHs were like.

1.5 Summary of Chapter 1
• The first stars are thought to have formed when the Universe was
∼150–200 million years old (around z ! 20). They initiated the process
of reionisation, which transformed the intergalactic medium (IGM) from
a neutral to an ionised gas.

• The lack of heavy elements and the impact of this on gas cooling is likely
to have resulted in larger masses for the first (Population III) stars,
compared with present-day star populations.

• Soon after the first stars, as halos grew more massive and enriched with
metals, the earliest galaxies were able to form and came to dominate the
process of reionisation.

• Observations of the spectra of quasars reveal absorption features
associated with the presence of intervening neutral gas along their light
path towards Earth. The Gunn–Peterson trough is caused by
redshifted Lyman-α absorption from neutral gas and is seen above
z ≈ 6, indicating that this is roughly when reionisation of the IGM was
complete.

• The rate of production of ionising photons from different sources, such
as massive stars and quasars, can be compared to the number of photons
required to ionise a given volume of gas. This allows us to compare the
roles of different ionisation sources during cosmic dawn.

• The earliest known galaxies have redshifts such that we are observing
their properties at the time when the Universe was ∼400 million years
old – a few per cent of its current age. They are typically first identified
in deep galaxy surveys using the Lyman-break method, and then
followed up with spectroscopy to confirm their redshift. Gravitational
lensing can enable us to detect and study the highest-redshift galaxies
in more detail.

• The population of galaxies observed at the earliest times has a steeper
luminosity function, indicating relatively fewer massive galaxies (as
expected from theories of galaxy evolution). This population of galaxies
was typically more disc-like and irregular in structure compared with
nearby galaxies.
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Chapter 1 Cosmic dawn

• Supermassive black holes (SMBHs) are now being found at redshifts
that are as high as those of the earliest galaxies, but the space density of
quasars is much lower than galaxies at the earliest times we can observe.

• Black-hole mass is a key property to measure. It can be estimated by
comparing quasar luminosity to the Eddington limit, the theoretical
maximum luminosity for a given black-hole mass.

• Quasar luminosity is linked to the black-hole accretion rate, via

L = ηṁc2 (Eqn 1.5)

while the Eddington luminosity is given by

LEdd =
4πGMBHmpc

σT
(Eqn 1.7)

• Black-hole mass has been found to correlate tightly with K-band
luminosity, velocity dispersion, and galaxy stellar bulge mass,
according to the relations:

MBH

109M"
= 0.54

(
LK

1011LK"

)1.2

(Eqn 1.8)

MBH

109M"
= 0.31

( σv
200 km s−1

)4.4
(Eqn 1.9)

MBH

109M"
= 0.49

(
Mbulge

1011M"

)1.2

(Eqn 1.10)

These tight correlations between black-hole and stellar properties of
galaxies indicate that the growth of galaxies and their central black
holes is closely linked.

• It is hard to explain the existence of the most massive black holes at
high redshifts if we assume they originated from light black-hole seeds,
which were produced by supernova collapse of the first stars and then
grew via accretion at the Eddington rate (or lower).

• Alternative theories include heavy black-hole seeds produced via direct
collapse, primordial black holes seeded at very early times, and/or
an important role for early mergers of black holes in dense star clusters.
This is an exciting topic of research with JWST and with the future
LISA gravitational wave observatory.
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Chapter 2 Gravitational lensing

Chapter 2 Gravitational lensing
You read in Chapter 2 of Cosmology that light always travels along a
geodesic, which is the shortest path between any two events (or locations)
in spacetime. A massive object causes spacetime in its vicinity to have a
curved geometry, so light paths that travel close to such an object are bent.
This phenomenon of light bending in the vicinity of massive objects can be
seen in astronomical images as the effect known as gravitational lensing.

Figure 2.1 shows a JWST image of a galaxy cluster. The most striking
features of this image are the elongated orange arcs that curve around the
cluster’s centre. Each of these arcs is a galaxy whose appearance has been
distorted because of gravitational lensing. Some galaxies appear more than
once, and you will find out why this happens in Section 2.1.1.

Figure 2.1 JWST image of gravitational lensing of the galaxy cluster

SMACS 0723. This is an infrared image (a wavelength of 0.9–4.4 μm)

measuring approximately 2.4 arcminutes on each side. (For reference, the

Moon as viewed from the Earth is about 24 arcminutes across.)
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Chapter 2 Gravitational lensing

In this chapter we will discuss how images like Figure 2.1 are formed, what
they can tell us about the matter between us and a light-emitting source,
and how they enable us to find and study very distant galaxies.
Specifically, we will cover the three main categories of lensing:

• strong lensing, such as in Figure 2.1, where the distortion of images is
visibly noticeable

• weak lensing, where image distortion is small but detectable when
many galaxies are examined together

• microlensing, which occurs on scales too small to distinguish visually
between the locations of the source and the lens, such as in lensing
between stars.

Objectives
Working through this chapter will enable you to:

• understand the principles and key equations describing gravitational
lensing

• carry out calculations to relate the locations and magnification of lensed
images to the properties and geometry of the lensing system

• explain the difference between strong lensing, weak lensing and
microlensing

• discuss the main applications of gravitational lensing for studies of the
distant Universe, and key results from those studies so far.

2.1 Theory of gravitational lensing
The idea that light paths are influenced by the presence of nearby massive
objects is strongly associated with general relativity. However, the notion
that light paths should be bent as they pass near to massive objects dates
back much earlier. Prior to the development of modern electromagnetism
theory and an understanding of the nature of light, it was predicted that
light particles should be accelerated by gravity according to the laws of
Newton, and so have their paths deflected when passing near to a massive
object like the Sun.

Einstein’s theory of general relativity predicts that light travelling adjacent
to an object of mass M will be deflected by an angle α̂:

α̂ =
4GM

bc2
(2.1)

where b is the impact parameter, which is defined as the perpendicular
distance of closest approach of the undeflected path to the large mass, and
α̂ has units of radians. Figure 2.2 illustrates the geometry of this situation.
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2.1 Theory of gravitational lensing

Figure 2.2 A light path travelling from a source S to an observer O is

deflected by angle α̂ as it passes a massive object of mass M .

The first measurement of this deflection was made during the 1919 solar
eclipse (Figure 2.3) as part of a now-famous study by Frank Dyson,
Arthur Eddington and Charles Davidson (Dyson et al., 1920). This was an
important early validation of general relativity.

Figure 2.3 Eddington’s photograph of the 1919 solar eclipse. Members of

the Hyades star cluster, which were used to measure the deflection, are

marked by crosses. Note that the linear arc below the Sun is an imaging

artefact, not an example of gravitational lensing.

Exercise 2.1

What is the angle of deflection of a light ray travelling from a distant star,
which passes at a minimum distance of 0.5R" from the surface of the Sun?
How does this angular measure compare to the diameter of the Sun
(∼1800 arcseconds) or the angular resolution of Eddington’s photograph
(∼1 arcseconds)?
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Chapter 2 Gravitational lensing

2.1.1 Geometry of a lensing system
Exercise 2.1 demonstrated that a light ray passing close to the Sun
exhibits a small but measurable deflection. Figure 2.4 generalises the
problem, showing the light path to an observer for a source S offset from
lens L (i.e. a massive object) by an angle β.

We will here consider the simplified situation in which both the lens and
the source objects are point masses (i.e. all of the mass is taken to be
located at a single point). In this scenario, instead of seeing the source at
its true location – namely offset from the line of L and O by β – an
observer at O actually perceives two deflected images of the source at
apparent locations S1 and S2, on either side of the lens. The image on the
same side of the lens as the source position, known as the primary image,
(S1 in Figure 2.4) is separated from the lens by an angle θ, and the
difference between the angles θ and β is denoted α. Once again b signifies
the impact parameter.

Figure 2.4 The geometry of the gravitational lensing of a source S by a

lens L, with the angles that are discussed in the text labelled. The apparent

positions of the source as seen from Earth are S1 and S2. (Light rays for S2
are not shown, for clarity.) DS, DL and DLS mark the distances from the

observer to the source plane, the observer to the lens, and the lens to the

source plane, respectively. Note that, as will be discussed in this chapter,

expansion of the Universe means that for distant lenses DS -= DL +DLS.

From Figure 2.4 we can derive the lens equation, which relates the three
key angles of the lensing geometry:

β = θ −α (2.2)

Note that we have written the three angles, β, α and θ, as vectors. This is
because each angular separation has a direction on the sky. In the
situation labelled in the figure, all of the angles have the same direction of
offset from the lens. However, if we apply the same definition of θ to the
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2.1 Theory of gravitational lensing

secondary image (the image on the opposite side of the lens to the source,
i.e. S2) then it will have the opposite direction. By treating the angles as
vectors, Equation 2.2 can be applied to both lens images. A crucial
consequence of these definitions is that all angles corresponding to the side
of the lens opposite to the source are assigned negative values, and so S1
will have a positive value of θ, while S2 will have a negative value of θ.

The thin lens approximation

A further important assumption being made here is that the physical
thickness of the lens (i.e. its width in the line-of-sight direction) is
very much smaller than DL and DLS, so that the bending effectively
happens instantaneously. This is known as the thin lens
approximation.

Using the lens equation
We can express the lens equation for the primary image, S1, as a sum of
the physical distances that are encompassed by each of the three angles in
the source plane (the imagined surface perpendicular to our sight line
at the distance of the source). Using Figure 2.4, and the small-angle
approximation from Cosmology Chapter 1, we see that in the source plane:

• the lens–source offset distance is given by βDS

• the source–S1 distance is given by α̂DLS

• the lens–S1 distance is given by θDS.

Therefore, the source-plane distance between the lens and S1 can be
expressed as:

θDS = βDS + α̂DLS (2.3)

What type of distance measures are DL, DS and DLS? (Hint : see
Cosmology Chapter 5.)

In Equation 2.3 we have related these distances to observable angles.
Hence these distances must be angular diameter distances.

An important consequence of the fact that these are angular diameter
distances is that, on cosmological scales, DL +DLS -= DS. The reason for
this is that DL and DS are angular size distances as measured by an
observer at the Earth, whereas DLS is the angular size distance that would
be measured for an observer at the location of the lens. The expansion of
the Universe therefore complicates the geometry! This complication can be
ignored for situations where the lens is at z ! 0.3.

In order to apply the lens equation to real situations, we want to link the
geometric quantities (angles and distances) to the lens mass. We can do
this by first rearranging Equation 2.3 to obtain:

α̂ =
DS

DLS
(θ − β) (2.4)
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Substituting for α̂ using Equation 2.1 gives:

4GM

bc2
=

DS

DLS
(θ − β) (2.5)

and replacing the impact parameter b for observable quantities (b = θDL,
as shown in Figure 2.4) results in:

θ − β =
4GM

θc2
DLS

DLDS
(2.6)

This equation can be written more simply as

θ − β =
θ2E
θ

(2.7)

where θE is defined as:

θE =

√
4GM

c2
DLS

DLDS
(2.8)

The quantity θE is known as the Einstein radius, and has a physical
significance that will be explained later in this chapter.

Exercise 2.2

Use the quadratic formula to show that for a given source–lens
configuration (i.e. fixed values of the three distances and α), Equation 2.7
has two solutions for θ, as indicated in Figure 2.4.

In general, β will not be measurable directly because it would require
knowing the unlensed source location. However, both values of θ (the
positive value corresponding to image S1, and the negative value
corresponding to image S2) may be measurable. If the distances to the
source and lens are known (typically from their redshifts) then in principle
we can derive the mass of the lens, M .

The point mass assumption

It is important to note that the point mass assumption is a
simplification of the true situation for lensed galaxy images. In reality
the lensing mass can be distributed over a large region, and light
paths may travel through the galaxy halo. The light path is bent only
by the mass interior to the impact parameter, rather than by the total
galaxy mass.

The following example shows how to apply the lensing equation to
determine the mass of a point lens. This involves the simplifying
assumption that the light paths for the primary and secondary image are
bent by the same mass, which, as the highlight box above explains, is not
very accurate depiction of what happens in such scenarios.
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2.1 Theory of gravitational lensing

Example 2.1

A galaxy at a redshift of zL = 0.010 lenses a galaxy at a redshift of
zS = 0.020. Images of the source are seen at θ1 = 10.3 arcseconds and
θ2 = −20.6 arcseconds from the lens. Calculate the mass of the lens, M , in
units of kg and M". Assume that the lens can be treated as a point mass,
and assume that these galaxies lie within the low-redshift limit in which
the Hubble–Lemâıtre law (Cosmology Chapter 1) can be used to obtain
distances.

Solution

We can write out two versions of Equation 2.6, one for θ1 and one for θ2:

θ1 − β =
4GM

θ1c2
DLS

DLDS
and θ2 − β =

4GM

θ2c2
DLS

DLDS

Since β, the lens–source angle from the observer location, is the same for
both equations, we can rearrange them both for β and equate them:

θ1 − 4GM

θ1c2
DLS

DLDS
= θ2 − 4GM

θ2c2
DLS

DLDS

All of the quantities in this expression are now known, except for the
lensing mass, M , and so we can rearrange to find the following expression
for M :

M = (θ1 − θ2)

(
1

θ1
− 1

θ2

)−1 c2

4G

DLDS

DLS
(2.9)

To apply this equation, we need to know the distances DL, DS, and DLS.
The question tells us that we can use the Hubble–Lemâıtre law to obtain
the distances, because the redshifts are sufficiently small that the distance
estimates will be very close to the angular diameter distances.

Using d = cz/H0 we find that the observer–lens distance DL is

2.998× 108 × 0.010

67.7× 103
= 44.3Mpc

= 1.37× 1024m

the observer–source distance DS is

2.998× 108 × 0.020

67.7× 103
= 88.6Mpc

= 2.73× 1024m

and the lens–source distance DLS is approximately

DS −DL = 44.3Mpc

= 1.37× 1024m
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We now have all of the quantities we need to calculate M . Converting the
angles given from arseconds to radians gives θ1 = 4.99× 10−5 rad and
θ2 = −9.99× 10−5 rad.

Substituting in all of the values into Equation 2.9, and being careful to
remember the minus sign of θ2, the mass of the galaxy lens evaluates to
M = 4.58× 1042 kg, which is ≈ 2.3× 1012M".

Note: for higher redshift ranges, we could use astropy.cosmology to
obtain more precise angular diameter distances, and to calculate the value
of DLS as an angular diameter distance measured from the lens location.

Exact source–lens alignment
The lensing geometry discussed in the previous section has an interesting
special case in the situation when the source and the lens are exactly
aligned. This scenario has important observational consequences.

In the case of exact alignment, i.e. β = 0, where will the lensed images
be found?

In this situation light radiating from the source will have a symmetric
distribution when it reaches the lens distance – it is not possible to
define a line in the source plane between the source and the lens. This
means that the light must be bent equally around the lens. Parts of the
lensed image are seen at all position angles around the lens, so that
there are no longer just two images in particular directions.

This type of lens image is known as an Einstein ring, and some examples
are shown in Figure 2.5. The rings are not complete in all cases because, in
reality, most sources are not point-like and may be asymmetric, so that
some parts of the source are not in exact alignment with the lens.

The radius of the Einstein ring is the quantity θE we defined earlier
(Equation 2.8). This can be shown by setting β = 0 in Equation 2.6,
getting both θ terms on the same side and then taking the square root to
obtain Equation 2.8.

We can also define the Einstein radius as a physical radius in the lens
plane, rE, if we know the distance of the lens:

rE = DLθE (2.10)
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2.1 Theory of gravitational lensing

Figure 2.5 Einstein rings around galaxies observed with the Hubble Space Telescope (HST ). The lens galaxies

in each case are the yellow–white central elliptical shape, with the sources appearing as blueish arcs around the

outside.

The next exercise allows you to explore the angular and physical size scales
involved for real lensing situations.

Exercise 2.3

Calculate the Einstein radius, in units of metres, for the following:

(a) a galaxy cluster of 3.0× 1014M" at 40Mpc from Earth lenses a
galaxy that is 150Mpc from Earth

(b) a star of 1M" at 4 kpc from Earth lenses a star that is 8 kpc from
Earth.

You may make the approximation that the lenses act as point masses for
large impact parameters and, as the systems are relatively nearby, you may
assume that DLS ≈ DS −DL.

Most optical telescopes can resolve objects of width approximately
1 arcsecond and larger. Space-based telescopes, as well as ground-based
telescopes equipped with adaptive optics, are able to image objects as small
as ∼0.015 arcseconds. Therefore, the Einstein ring of a galaxy cluster at
typical distances can be easily resolved, as in Figure 2.1. However, in the
case of lenses of much lower mass – for example where there is
microlensing by individual stars – the angular separation between both
stars is very small, and their light is observed as a single point on the sky.
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2.1.2 Magnification
As well as distorting the apparent shape and location of a distant source,
gravitational lensing can also affect its apparent brightness. It is most
straightforward to consider the case of an Einstein ring: in this situation
light paths travelling outward from the source that would diverge in the
case of no lens are instead bent towards the observer by the lens. This
convergence effect means that the observer’s telescope will detect a larger
proportion of the light that the source emitted than would be the case if
there was no lensing object. The source image is therefore magnified
relative to its true brightness, in a similar effect as that produced by the
optical lens in a magnifying glass.

To consider the magnification effects more quantitatively we can
characterise the source–lens geometry by a parameter u, which is the
expected strength of the lensing effect. It is defined as:

u = β/θE (2.11)

When β ! θE the light will pass close to the lens, and so the lensing effect
will be strong, whereas when β $ θE the impact of lensing will be weaker.

Strong and weak lensing

Strong lensing is defined as occurring in geometries in which β is less
than the Einstein radius.

Weak lensing occurs in situations where β is significantly larger than
the Einstein radius.

The amplification of a source’s light, A, is defined as the ratio of the
observed brightness relative to the unlensed expectation. In the case of a
point source and point lens, the total amplification of the two lensed
images (S1 and S2 in Figure 2.4) is given by:

A =
u2 + 2

u
√
u2 + 4

(2.12)

What is the amplification in the limiting cases of u → ∞ and u = 0?

As u → ∞ (i.e. very high source–lens angular separations), A → 1, and
as u → 0 (very small source–lens angular separations), A → ∞. In other
words, a source far from the lens is negligibly amplified, while a source
directly behind the lens is strongly amplified.

In reality the exact limit of A = ∞ (i.e. an infinitely amplified source) isn’t
physically possible, because no source or lens is truly a point, and so
perfect alignment is impossible.

Equation 2.12 can be used to calculate the amplification of a background
source at different locations relative to the lens. Figure 2.6 is a
magnification map for a point-mass lens. The colour gradient shows how
the amplitude of the source behind the lens varies as a function of its
location on the sky (in units of θE).
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Figure 2.6 Magnification map of a point-mass gravitational lens, where all

the mass is concentrated at the axes’ origins.

A very important feature of magnification due to lensing is that it is
achromatic, meaning that the amplification A is independent of
wavelength. This is different from the behaviour of simple optical lenses
that we use in everyday life, where the dispersion of light travelling
through a medium such as glass causes wavelength-dependent effects.

In principle, the achromatic nature of all gravitational lensing enables
unaltered colour information about the background source(s) to be
recovered. This is most straightforward to do in the situation where both
the lens and source are point-like (for example in microlensing). In
situations where the source is extended on the sky, as discussed shortly,
the lensing effect is still achromatic, but the wavelength-dependence of the
source structure complicates the interpretation of observations.

Achromatic amplification effects can be a very useful way to confirm the
presence of gravitational lensing. For example, microlensing signals can be
distinguished via their achromaticity from other sources of variability in
brightness that typically do depend on wavelength, e.g. stellar pulsations.
The next section considers further information that can be deduced from
studying microlensing.
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Microlensing and the Einstein-crossing timescale
Stars move with respect to each other so, in a microlensing situation, a
source star that passes behind a lensing star will move through
configurations that cause different magnification for an observer. This
means that the source star will seem to brighten and return to its ‘normal’
apparent magnitude as its light is amplified by different amounts. In these
cases a characteristic light curve, like that in Figure 2.7, is produced.

Figure 2.7 Microlensing light curve, showing the amplification as the source,

lens and telescope approach perfect alignment (u = 0).

The amount by which the system gets brighter depends on how close the
stars’ approach is, and how much the source star contributes to the total
flux observed for both stars.

The timescale over which the star brightens depends on the size of the
Einstein ring created by the lensing (thus the mass of the lensing star and
the stars’ relative separations; see Equation 2.6) and on the relative
velocities of the stars in the plane of the sky (their proper motions). The
time taken for a star to travel a distance on the sky corresponding to the
Einstein radius for the lensing geometry of the two stars is described by:

tE = rE/vt (2.13)

where vt is the transverse component of the relative velocity of the stars in
the lens plane. This period is called the Einstein-crossing timescale.

Exercise 2.4

Assume the lens star in Exercise 2.3 part (b) has a transverse velocity of
150 km s−1 with respect to the source star.

(a) Calculate the timescale during which the source star passes within the
Einstein radius.

(b) Comment on how the timescale varies with lens mass.

(c) What would the timescale be, in hours, if the lens were the mass of
Earth (M⊕ = 3× 10−6M")?
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Exercise 2.4 shows that timescales of days or even hours are needed to
search for Earth-mass objects through microlensing. This is now a highly
successful method to search for extrasolar planets (exoplanets), as will be
discussed in a later section. However, similar calculations involving
galaxies or galaxy clusters would show that their relative angular motions
are too small to enable measurements of time variation due to changes in
magnification on human timescales.

2.1.3 Extended sources and lenses

Effects of an extended source
If a source has an appreciable size compared to the Einstein radius for that
lens–source system, then portions of the incident light will pass the lens
with different impact parameters, b. This means that different parts of the
source light will experience deflections by different angles, α̂. The effect of
this varying deflection is that the images of the source will become
distorted, as well as being magnified.

Figure 2.8 shows how the images of a source are distorted as perfect
alignment approaches (moving left to right across the panels), until the
source eventually appears bent into an Einstein ring. The central dot
represents the lens position, while the black circle is the Einstein radius.
Note also the movement of the second (initially smaller and fainter) image
inside the Einstein radius, and how the coming together of the two images
makes the Einstein ring.

Figure 2.8 Distortion of a circularly symmetric finite source with different

source–lens alignments. The value of u corresponding to the centre of the

source decreases from left to right until u = 0 (perfect alignment), where an

Einstein ring is formed (right panel). Colour is used consistently in each panel

to indicate regions with the same surface brightness.

An interesting and important property of this distortion is that the surface
brightness of objects is conserved: an object that is distorted over twice its
nominal area will be amplified to twice its original (unlensed) flux. We can
therefore use Figure 2.8 to understand an object’s amplification. As each
coloured region approaches the lens it is distorted over an increasingly
large area; its surface brightness remains constant and so the flux is higher.
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Searches for lenses therefore look for the related phenomena of image
distortion and magnification. On microlensing scales, where the object’s
shape cannot be resolved, it is the unexpected brightening of stars that
allows us to find gravitational lenses. On galaxy- and galaxy-cluster scales
the simplest way to identify gravitational lenses is to look for distorted
images of magnified background galaxies, as seen in Figures 2.1 and 2.5.
However, it is also possible to hunt for gravitationally lensed galaxies using
statistical methods to identify galaxies that appear unusually bright,
implying high magnification. This can be a powerful way to identify
candidate high-redshift galaxies; spectroscopic observations can
subsequently be used to confirm their large distances.

Multiple lenses
As well as extended sources, another possible gravitational lensing scenario
involves sources and/or lenses made up of more than one object, such as
two stars in a binary system. In a situation with multiple sources we can
treat each source separately, but it is worth mentioning that particularly
interesting microlensing light curves can occur when the source is a binary
star system. Here the two impact parameters (one for each source star)
continuously change, not only due to motion of the whole system across
the sky, but also due the motion of each star in the binary in its orbit.

The situation where the lens (rather than the source) is a binary system is
more complex. The simplest case is that of a wide binary star system,
where the binary orbit changes much more slowly than the
Einstein-crossing time. In this situation, the microlensing light curve
normally has two peaks instead of one.

The magnification map for binary lenses is also complex. For a point-mass
lens, only a perfect alignment produces theoretically infinite magnification.
In contrast, for a binary lens, a source will tend towards infinite
magnification along a series of lines on the sky (drawn in the source plane),
which form one or more caustics. Rather than generating an Einstein
ring, light passing through these caustics produces strongly distorted
images on one or more critical curves. We see similar effects of these
caustics and critical curves from optical lenses in everyday life, for example
in patterns of lighter and darker regions as light is refracted through a
glass of water or onto the bottom of a swimming pool.

Figure 2.9a shows three different paths through a binary lens system
comprising two unequal point masses; for example, three equally spaced
source stars passing behind a lensing binary star system or, conversely,
three equally spaced observers observing the same microlensing event from
different observatories. (We will show a real example of a situation
involving different observer viewpoints later in the chapter.) As in the
single-lens case, source stars are magnified as they approach either lens.
However, we can see in panel (b) that there are sharp enhancements of the
magnification, A, when the paths denoted by the solid blue–grey line and
the dashed green line cross over the caustic curves. Similar (though more
complex) caustics exist when more than two point lenses are present.
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Figure 2.9 (a) Map of the positions on the sky of the critical curves (closed

black curve) and caustics (closed red curve with five cusps) for an unequal

binary lens consisting of two point masses (black points). (b) Light curves

produced by sources traversing the diagonal lines in (a) so that the impact

parameter changes with time.

We can relate the situation in Figure 2.9 to the simple point-source case by
imagining that we can gradually shrink the source–lens angle to zero. As
the separation tends to zero, the caustic shrinks to a point at the centre,
and the critical curve about which the lensed images are arranged becomes
a circle, corresponding to an Einstein ring. In this situation, the light
curves in panel (b) all become single-peaked, with the solid blue–grey curve
having the highest peak and the short-dashed purple curve the lowest.

Distributed-mass lenses
In cases involving galaxies, lenses can rarely be treated as points and are
instead referred to as extended lenses. In this situation a light path feels
the effect of only the fraction of the total lens mass contained within a
spherical region of the radius corresponding to the impact parameter.

A simple example of an extended lens is an elliptical galaxy, which has an
elongated distribution of mass. This arrangement results in a set of
caustics for which the amplification is highest, and a set of critical curves
corresponding to where the images end up.

Figure 2.10 shows a series of diagrams of the caustics and critical curves
produced by such an extended lens. Panel (S ) shows the source plane with
two caustics centred about the lens location, and points to indicate a series
of numbered locations for the source. Panel (I ) shows an image of the
unlensed source. The panels (1 ) to (8 ) show the lensed images that occur
when the source is placed at the corresponding numbered location in
panel (S ). The circular and elliptical regions in the numbered panels are
the critical curves around which the lensed image positions are located.

49



Chapter 2 Gravitational lensing

Figure 2.10 The predicted effect (panels (1 ) to (8 )) of moving an extended circular background object

(panel (I )) through the lens caustics caused by a simulated elliptical galaxy lens (panel (S )).

The various lensed image geometries shown in Figure 2.10 can be seen in
real observations. Some of the most easily identifiable examples of multiple
lensed image configurations caused by extended lenses involve images of
distant quasars. Figure 2.11 shows some examples of quasars lensed by an
extended foreground source, resulting in configurations similar to some of
those in Figure 2.10 (bearing in mind that a quasar is a point source of
light, unlike the extended source assumed in Figure 2.10, and so the lensed
images remain point-like). Several of the panels show a configuration
known as an Einstein cross, in which a cross-shaped configuration of four
lensed images occurs.

50



2.2 Applications of gravitational lensing

Figure 2.11 Examples of multiple lensed images of quasars, imaged by the

HST . Note that panels (d) and (e) include some background sources that are

unrelated to the lensing – these sources are identified with red ellipses.

Given the point-like nature of the source objects, in which panels of
Figure 2.11 is the source likely to be aligned most closely with the lens?

Panels (b) and (d) show the most symmetrical Einstein cross
configurations, similar to panel (6 ) in Figure 2.10. This is the
configuration in which the source is centrally aligned.

2.2 Applications of gravitational
lensing

Gravitational lensing is an extremely powerful tool in astronomy and
cosmology, because its measurable effects depend only on the mass and
mass distribution of the lensing object or system. This makes it a unique
way to search for matter that cannot be detected via the light it emits.
Situations to which this applies include searching for and measuring the
properties of dark matter, finding black holes, and also hunting exoplanets.

The second reason for the importance of lensing is that the magnification
of light from distant objects, and the elongation of their images over larger
areas, makes finding and studying very distant galaxies easier. Lensing
allows us to explore galaxies at high redshift that would otherwise be too
faint and/or too small in angular size to resolve details of their structure.

In the remainder of the chapter we will discuss these observational
applications of gravitational lensing in more detail.
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2.2.1 Microlensing
The initial application of microlensing was to investigate theories of dark
matter. Historically, an important theory to explain dark matter was the
existence of massive compact halo objects (MACHOs). These are
massive solid bodies that could be orbiting in the halos of the Milky Way
and other galaxies, and emit very little light. Possible MACHO
populations could include brown dwarfs, neutron stars or stellar-mass
black holes, and their presence can be inferred through the amplification of
light from background stars that they pass in front of.

Over several decades there have been many campaigns to monitor
variability in the brightness of stars in the Milky Way. The frequency at
which microlensing events are detected in these surveys gives an indication
of how many dark-matter objects of a given mass there are in the Galaxy.
If no objects within a certain mass range are observed in a particular
direction on the sky, this gives us an upper limit to the extent that objects
of that mass can contribute to the total dark matter in the intervening
space in that direction. For example, monitoring stars in the Magellanic
Clouds to detect microlensing events allows us to place limits on the
MACHO population in the Milky Way’s halo, while observations in the
direction of the Galactic bulge puts limits on the MACHO population in
the Milky Way’s disc.

Generalised limits on the fraction of dark matter that can be made of
MACHOs of a given mass are shown in Figure 2.12. This plot is the result
of multiple microlensing studies: the shaded regions show ranges in mass
and dark-matter contribution that are ruled out by the observations. This
evidence shows that the majority of dark matter cannot be made of
MACHOs; microlensing is particularly important for ruling this out in
objects with masses between 10−9M" (similar to lunar mass) and 10M".

In the last couple of decades, evidence from the cosmic microwave
background and structure formation have separately led baryonic models
of dark matter to be disfavoured. Instead, the microlensing evidence
against large populations of MACHOs has been used to support the
currently favoured theory that dark matter is non-baryonic. However, the
microlensing limits don’t yet fully rule out a contribution made to dark
matter from a population of primordial black holes formed in the very
early Universe.

Having established that MACHOs form very little of the dark matter
around us, microlensing surveys have changed their goals to finding isolated
stellar-mass black holes and exoplanets. Microlensing is currently the most
effective technique for finding planets with similar masses (M⊕) and orbits
to Earth, and free-floating planets that have become gravitationally
unbound from their host stars. Figure 2.13 shows the population of known
exoplanets, categorised according to their detection method.
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Figure 2.12 Limits from a range of microlensing experiments on the fraction

of dark matter that can exist in the form of MACHOs. Dashed outlines

indicate less conclusive studies; darker shaded regions indicate agreement

between different studies or methods.

Figure 2.13 The observed exoplanet population of different masses and

orbital separation (with both quantities measured relative to Earth), showing

the main detection techniques for different parameter values. Microlensing is

the most efficient method for detecting planets between the masses and

orbital separations of Earth and Saturn, which has a mass of approximately

2M⊕ and a separation of roughly 10AU.
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Figure 2.14 shows the observed microlensing light curves of one of the
microlensing detections shown in Figure 2.13: an object designated as
K2 -2016-BLG-0005Lb. Two different light curves are presented. Panel (a)
shows one obtained from the Kepler (K2 ) Space Telescope, which was
about 0.6AU from Earth at the time. In contrast, the light curve in
panel (b) was obtained from a collection of ground-based telescopes.

Figure 2.14 Discovery light curves of K2 -2016-BLG-0005Lb: (a) data (and associated dotted line, which is a

model fit to these data) from the K2 spacecraft; (b) data from a number of ground-based observatories, denoted

by the different colours (fitted by the solid line).

The light curves in Figure 2.14 have a number of interesting features:

• The data from Earth and space are very different from each other, which
is caused by the different viewing locations of the telescopes, and lets us
rule out other astrophysical explanations, like stellar flares.
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• The ground-based light curve (Figure 2.14b) is achromatic. The various
telescopes involved measured several wavelengths of light, but showed a
consistent light-curve shape, which is a signature of microlensing.

• Both sets of data exhibit similar peaks to Figure 2.9b, indicating the
crossing of a caustic feature in a binary microlens.

Subsequent modelling of the microlens relating to this exoplanet reveals
this caustic to be formed by a stellar system with a star about half the
Sun’s mass that is orbited by a Jupiter-like planet.

2.2.2 Weak gravitational lensing
Gravitational lensing can be used as a powerful tracer of the large-scale
structure of the Universe, through patterns of weak lensing. The principle
works much the same as strong lensing, but instead of identifying and
studying individual, clear-cut examples of magnified and distorted
galaxies, it relies on the very subtle distortions that affect galaxies at
larger angular distances from the lens (u $ 1).

The strength of this method is that there is typically a very large number
of background galaxies within a typical telescope field of observation,
which means that a statistical ensemble of galaxies can be used to measure
trends in the deformations of background galaxies. These deformations
trace the overall mass distribution of the cosmic web. Figure 2.15
illustrates the effects of weak lensing, sometimes known as cosmic shear,
on a large population of background galaxies. Note how the background
galaxies (in blue) are subtly gravitationally lensed by the matter in front of
them, which tends to make them appear aligned with the foreground
cosmic web (orange).

Figure 2.15 Exaggerated view of weak gravitational lensing by the cosmic

large-scale structure of the Universe. Background galaxies are shown in blue,

while the foreground matter distribution (the cosmic web) is shown in orange.
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Weak lensing is an excellent test of cold-dark-matter (CDM) structure-
formation models, and a tool for exploring how the distribution of mass in
the Universe has changed over time. This also makes weak lensing useful
for measuring the evolution of dark energy, and there are many ground-
based and space-based imaging missions that seek to do this, with
unprecedented precision. The cosmic microwave background radiation is
also weakly gravitationally lensed by the intervening cosmic web, and this
provides a useful consistency check of the cosmological parameter
constraints from the CMB.

2.2.3 Strong lensing by galaxies
We have previously used point masses to make approximate order-of-
magnitude estimates in extragalactic gravitational lensing, but we have
also cautioned that the mass distributions of galaxies and galaxy clusters
are not well approximated as point sources.

In Newtonian gravity, the force outside a spherically symmetric mass
distribution is the same as if the entire mass were concentrated in a point
at the centre.∗ According to this theory, if the Sun were suddenly squashed
into a point, the Earth would continue to orbit as if nothing had happened.

Consequently, the mass that can gravitationally influence the path of a
light ray is only the mass within the spherical region centred on the lensing
mass whose radius is the impact parameter. For example, in a circular
Einstein ring, the only mass involved is that which is contained within the
ring. However, if there are several separate images of the background
galaxy observed at different distances from the lens, then each image may
have been gravitationally influenced by a different total enclosed mass.

A good approximation to the total mass distribution of a galaxy is often
the so-called singular isothermal sphere, which has the same matter
density profile that a self-gravitating isothermal ideal gas would have.
Dark matter particles don’t interact with each other so they can’t be
described as an ideal gas, which means it’s strange that this works at all.
But, if you relate the one-dimensional velocity dispersion of stars σv to the
‘temperature’ in this model, then the density profile turns out to be

ρ(r) =
σ2
v

2πG

1

r2
(2.14)

This model breaks down right at the centre, because the density
approaches infinity as r approaches zero.

We can write the mass enclosed by a radius r as M(r), which is given by

M(r) =

∫
ρ(r)4πr2 dr (2.15)

∗This is a consequence of Gauss’s theorem (sometimes called Gauss’s flux theorem),
which you may have met elsewhere, applied to gravity. There is a similar theorem in
general relativity, called Birkhoff’s theorem.
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This integral evaluates to a constant multiplied by
∫
dr, which means that

the enclosed mass would continue to increase without limit as r increases!
The singular isothermal model must therefore also break down at large
radii, but can nevertheless be used to obtain useful mass estimates in
appropriate radial ranges. Galaxy matter distributions also tend to have
some ellipticity rather than being spherical, which further enriches the
potential lensing effects.

An ellipsoidal singular isothermal mass distribution is what was used to
produce Figure 2.10, which showed that the caustics and critical curves are
much richer than those for point sources. If the background sources are
sufficiently small in the source plane, then they can appear as four distinct
images, as is seen in many lensed quasars (like those shown in Figure 2.11).

The brightness of a quasar can also vary with time, which can lead to an
ingenious use of lensing to measure the local Hubble parameter, H0. The
angular diameter distances (DL, DS and DLS) in Figure 2.4 are all
proportional to 1/H0. This means that using a different value for H0

simply scales up or scales down the whole system, as shown in Figure 2.16.

Figure 2.16 Schematic view of how the geometry of a gravitational lens

changes for (a) a large, and (b) a small value of the Hubble parameter H0.

The lens is marked as L, while the source and observer are S and O,

respectively. The two light paths have different lengths, and therefore

different travel times.

The positions of the images in Figure 2.16 don’t change with H0, but the
light travel time does change, and so will the travel time difference
between the images. If one lensed image of a quasar flares brightly, we just
need to wait for the other images to flare in order to measure the
differences in light travel distance. If there is an accurate enough mass
model for the lens, this will then yield a measure of H0. This technique,
known as Shapiro delay after its discoverer Irwin Shapiro, has also been
applied to gravitationally lensed supernovae.
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The properties of quasars themselves can also be explored using lensing.
Lensing galaxies are made up of many individual stars, which generate
complex sub-structure on top of the overall shape of the lens mass
distribution, including a mesh of overlapping caustics on the scales of
microarcseconds. Small objects in the source galaxy can move across these
caustics, effectively providing microlenses within the larger strong lensing
system. These small objects may be individual stars, or the structures
around a galaxy’s central black hole. The unique spectral profile of active
galactic nuclei and the colour differences across their black-hole accretion
discs means that the sizes of these structures can be measured via the
timescale of colour changes in their lensed images.

We have skirted around why these unphysical singular isothermal models
work at all. Unfortunately there isn’t a good answer. By combining the
strong and weak lensing constraints from a large sample of galaxies, it
turns out that the observed stellar mass profile plus the predicted dark
matter halo profile arising from CDM structure-formation theory sum up
to a profile resembling a power-law, and the slope of that power-law is not
too different from the isothermal model. The stellar mass dominates at
small radii, while dark matter dominates at large radii. Eventually the
density profile falls off more quickly than the power-law, as required by the
divergence in the isothermal model.

2.2.4 Gravitational lensing with the JWST
We finish this chapter by showcasing some recent spectacular successes of
using JWST and the most massive gravitational lenses – clusters of
galaxies – to find very distant galaxies via magnification effects. Here the
lensing mass distributions are more complicated, and very large
magnifications are more likely.

Figure 2.17 shows a JWST view of the lensing cluster SMACS 0723,
including the ‘Sparkler’ galaxy, containing what may be the most distant
globular clusters of stars seen to date. Globular clusters contain some of
the earliest stars to form in a given galaxy, and so it is an exciting
discovery to be able to distinguish these clusters in a galaxy being observed
at a time when the Universe was half of its current age. The curved red
arcs in this figure are other distant background galaxies, which would be
much harder to detect if they weren’t magnified by the foreground cluster.
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Figure 2.17 Section of a JWST image of the gravitationally lensing cluster

SMACS 0723 (shown in full in Figure 2.1). The inset shows the Sparkler

galaxy, which contains many candidate globular clusters, and compares it to

the less clear HST image.

Figure 2.18 shows two very distant lensed galaxies discovered by JWST .
These are candidates for some of the most distant galaxies discovered, at
the time of writing.

Figure 2.18 Two distant galaxies discovered by JWST thanks to

gravitational lensing magnification by the galaxy cluster Abell 2744.

The galaxies in Figure 2.18 were predicted to be high redshift on the basis
of their colours, and the most distant of these two has since been
confirmed to have a redshift of z = 12.117. We are therefore seeing the
galaxy as it was only 360 million years after the big bang. Ultimately,
gravitational lensing could represent our only means to observe clusters of
the earliest, Population III, stars, if such examples can be found.
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2.3 Summary of Chapter 2
• A point-mass gravitational lens will deflect a passing light ray by

α̂ =
4GM

bc2
(Eqn 2.1)

where b is the perpendicular distance of closest approach of the
undeflected light path to the lens, known as the impact parameter.

• Astronomical sources of light for lensing can include background stars,
galaxies, quasars and even the CMB.

• Bodies that can act as lenses include planets, stars, black holes, galaxies
and galaxy clusters.

• The lens equation for a point mass relates the angular separations on
the sky between the source, the lens and the lensed images. It can be
expressed as a relation between the source–image angle θ, the
source–lens angle β, the lens mass M , and the angular diameter
distances from the observer to the lens (DL), from observer to the source
(DS), and from lens to source (DLS):

θ − β =
4GM

θc2
DLS

DLDS
(Eqn 2.6)

• Lensed images are magnified relative to the source brightness. For a
point-mass lens, the total amplification is

A =
u2 + 2

u
√
u2 + 4

(Eqn 2.12)

where u = β/θE (Equation 2.11), and θE is the angular size of a lens’s
Einstein ring.

• Lensing causes the stretching and/or magnification of background source
objects (or features within them), making them measurable when they
would otherwise be too faint or small to be identified.

• Extended sources and lenses with extended mass distributions behave in
more complex ways than point models. Extended lenses result in
caustics, which are locations in the source plane where the
magnification tends to infinity, and corresponding critical curves of
highest magnification in the image plane.

• The critical curve for a point-mass lens is the Einstein ring, which has
an angular radius of

θE =

√
4GM

c2
DLS

DLDS
(Eqn 2.8)
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• Strong lensing occurs in situations where the source has a small
angular offset from the lens (i.e. u ! 1).

◦ This form of lensing is useful in measuring the properties of galaxies
and galaxy clusters, especially the distribution of mass within them
(including dark matter).

◦ It also allows the observation of structure (and even individual stars)
within high-redshift galaxies.

◦ Strong lensing of time-varying sources can also provide constraints on
the Hubble parameter, through the Shapiro delay.

• Weak lensing occurs in the situation of larger angular offsets between
source and lens (i.e. u $ 1).

◦ It involves measuring the lensing distortion of a statistical ensemble of
many galaxies, enabling trends in their distortion to be used as a
tracer of large-scale structure.

• Microlensing occurs when the angular offset is too small for telescopes
to distinguish between the locations of the source and lens on the sky.

◦ It has been useful in determining that massive compact halo
objects (MACHOs) – black holes or other dark, compact objects –
make up at most a very small fraction of dark matter.

◦ It is also widely used to find exoplanets. Unlike most other
techniques, it is sensitive to relatively small planets on wide orbits as
well as free-floating planets.
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Chapter 3 Galaxy clusters
Galaxy groups and clusters – the gravitationally bound assemblies of tens
to thousands of individual galaxies – are unique laboratories through
which to study astrophysics in action. Compared to individual galaxies,
clusters can be said to contain a more representative sample of the
contents of the Universe: ordinary matter, dark matter, and radiation.

In Cosmology and in the previous chapter you saw that galaxy clusters act
as nodes in the cosmic web to test how structure has evolved, and provide
strong evidence for, and tools to investigate, dark matter. In this chapter
we will explore galaxy clusters as astrophysical laboratories through which
to study both small-scale processes of the interaction of matter and
radiation, and large-scale processes of galaxy evolution.

Objectives
Working through this chapter will enable you to:

• summarise key methods used to identify and measure the properties of
galaxy clusters

• describe the properties of the intracluster medium (ICM) and its main
emission processes

• manipulate quantities and solve problems relating to X-ray emission
from the ICM and the Sunyaev–Zeldovich effect

• summarise key differences between the observed properties of galaxies in
clusters and those in lower density environments

• discuss the major processes influencing how galaxies in cluster
environments evolve over time, including ram pressure stripping,
radiative cooling and AGN feedback.

3.1 Finding and studying galaxy
clusters

3.1.1 Optical and infrared observations
Galaxy clusters were identified in early telescope surveys of the sky as
regions where the sky density of galaxies, i.e. the number of galaxies per
square degree, was higher than the typical background distribution of
galaxies. Initial investigations of individual galaxy clusters, such as the
famous Coma cluster, date to the period when the nature of galaxies was
first being established in the early twentieth century. The first major
catalogue of around 2700 galaxy clusters was assembled by George Abell
from the Palomar Sky Survey, and published in 1958. Figure 3.1 shows
modern optical images of two of the clusters catalogued by Abell.
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Figure 3.1 Two galaxy clusters from the Abell catalogue, (a) Abell 1689

observed by the HST, and (b) Abell 2052 observed by the VLT. Both images

show a region that spans ≈ 500 kpc.

The two clusters shown in Figure 3.1 are both sufficiently near that the
observations enable the detection of all of the medium-to-large galaxies in
the clusters. We can therefore conclude that the two galaxy clusters differ
in their optical richness: Abell 1689 has a larger number and higher
central density of galaxies than Abell 2052 has.

Measuring the richness of galaxy clusters is useful because it allows us to
investigate how environment affects the evolution of galaxies, as well as
potentially enabling cosmological tests, e.g. via the halo mass function
introduced in Cosmology Chapter 10. Optical richness can be measured in
a variety of ways. Abell counted the number of galaxies above a given
luminosity threshold within a physical diameter of 2Mpc, taking this to be
a typical galaxy cluster size. Modern galaxy surveys take a variety of more
sophisticated approaches including incorporating three-dimensional
information, using redshift measurements to ensure that only those galaxies
that are at roughly the same distance are included as cluster members.

Would you expect the optical richness of a cluster to be related to the
total cluster mass?

The density of galaxies must be related to the total gravitational
potential of the cluster: stronger gravitational forces will pull galaxies
closer together. It is also logical, from the point of view of galaxy
formation (see Cosmology Chapters 10 and 11), that more massive
overdensities will form a larger number of individual galaxies.
Optically rich clusters therefore have a large total mass relative to
optically poor ones.

The relationship between optical richness and cluster mass is not simple,
however. By the time Abell compiled his catalogue, there was already a
mystery about the nature of matter in galaxy clusters. As discussed in
Cosmology Chapter 9, Zwicky’s 1933 analysis of the galaxy motions in the
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Coma cluster revealed a very large mass-to-light ratio, so the majority
of mass could not be in the form of stars. The method of gravitational
lensing, discussed in Chapter 2 of this book, is another, entirely
independent form of evidence for this conclusion.

Only around 3% of the mass in galaxy clusters is contained in the stars
producing the optical light we observe from the constituent galaxies.
Baryonic material in total makes up 10–15% of the cluster mass, but most
of these baryons are not in individual galaxies: instead they are part of the
intracluster medium, a hot X-ray emitting gas that will be discussed in
the next section.

3.1.2 X-ray emission from clusters
It has been known since the 1970s that galaxy clusters are copious emitters
of X-rays, which are produced across a large region spanning multiple
galaxies. Figure 3.2 shows the X-ray emission measured by the Chandra
X-ray Observatory overlaying optical images of cluster galaxies.

Figure 3.2 X-ray emission from four galaxy clusters (purple), as observed by

Chandra, superimposed on their optical images.
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The smooth distribution of the X-ray emission, which extends in between
the individual galaxies, indicates that the radiation is not being produced
by the stars and gas in individual galaxies. Instead, it reveals the presence
of a low-density plasma – the intracluster medium (ICM) – pervading the
entire cluster. The nature of this gas can be determined via spectroscopy:
Figure 3.3 shows the X-ray spectrum of a nearby galaxy cluster.

Figure 3.3 The X-ray spectrum from a region of intracluster medium in a

nearby galaxy cluster.

Conventional units for X-ray and gamma-ray photon energies

You may be used to seeing the spectra of astrophysical sources
expressed as functions of wavelength or frequency. In X-ray and
gamma-ray astronomy, it is much more common to see spectra plotted
as functions of photon energy. Conventionally, photon energies will be
defined in terms of electronvolts.

Fortunately, the expressions for converting between a photon’s energy
E, its frequency ν and its wavelength λ are very simple. They involve
the Planck constant, h, and the speed of light in vacuum, c:

E = hν =
hc

λ
(3.1)

The shape of a galaxy cluster spectrum, such as that of Figure 3.3 is
caused by two processes, thermal bremsstrahlung, which results in the
smooth underlying continuum shape, and atomic transitions, which result
in emission lines at particular energies. Thermal bremsstrahlung is a type
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of radiation caused by the acceleration of charged particles as they interact
with each other in an ionised plasma. Bremsstrahlung emission is also
sometimes referred to as ‘free–free’ emission, because (in contrast to line
emission processes, for example) the electrons involved remain unbound to
nuclei both before and after the interaction that produces the emission.

The X-ray spectrum is produced by ionised gas, but it is not a
black-body spectrum. What does this tell us?

Black-body radiation is produced in situations of comparatively high
density: the gas must be opaque to radiation, with photons and gas
particles frequently interacting. The intracluster medium is not opaque
to X-ray radiation, and must have comparatively low density.

We can learn a lot about the intracluster medium from both the
continuum and line emission. The volume emissivity of thermal
bremsstrahlung emission (the power emitted per unit volume, measured in
units of Wm−3) is given by

ε = 1.4× 10−40gffZ
2neniT

1/2 (3.2)

where ne and ni are the number densities of electrons and ions,
respectively, T is the gas temperature, gff ∼ 1 is the (dimensionless) Gaunt
factor, a small correction factor usually close to 1, and Z is the mean ion
charge (also close to 1 for a mainly hydrogen plasma).

Like black-body radiation, the shape of the continuum curve is determined
by the gas temperature, which must be very high (∼107–108K) to produce
photons with energies that peak in the X-ray region. But Equation 3.2
shows that, unlike black-body radiation, the X-ray emission from galaxy
clusters can also be used to determine gas density, which is very useful for
understanding cluster physics.

The emission lines are also very interesting because they tell us about the
presence of heavy elements, i.e. the astronomical metals. The hydrogen
and helium in the intracluster medium are fully ionised at X-ray emitting
temperatures, but heavier elements may be only partially ionised, and so
can undergo electronic transitions that cause the observed lines. These
lines tell us the abundances of particular elements; they are also a further
diagnostic of the gas temperature and density, because the ratios between
the strengths of different lines depend on those conditions.

What can we learn by studying the abundance of astronomical metals in
the ICM?

With the exception of small quantities of lithium, all elements heavier
than helium are produced by stars. The presence of significant amounts
of metals in the ICM shows that it is not composed only of primordial
gas produced in the big bang: chemically enriched material must have
escaped galaxies in large quantities to alter the metallicity of the gas.

Detailed X-ray studies over several decades with high-resolution X-ray
telescopes, including ROSAT, Chandra, XMM-Newton and most recently
eROSITA, mean that the distributions of gas density, temperature and
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metallicity (including the abundances of particular metals, such as
magnesium and iron) have been measured carefully for large numbers of
galaxy clusters.

Hydrostatic equilibrium and cluster mass
The ability to measure gas density and temperature distributions in galaxy
clusters provides a powerful way to examine their mass distributions. Just
like the Earth’s atmosphere, and the interiors of stars like the Sun, the
intracluster medium is typically in hydrostatic equilibrium.

At any given location within the cluster, the pressure forces acting on a
parcel of gas must balance the gravitational forces pulling it towards the
centre of mass, so that the net acceleration is zero and the gas remains
static. Figure 3.4 illustrates these balanced forces acting on a shell of gas
at a particular radius, r, within the cluster ‘atmosphere’ (ICM).

The gravitational force acting on the parcel of gas with mass ΔM , located
at radius r, is given by

Fgrav = g(r)ΔM (3.3)

where g(r) = GM(r)/r2 is the local acceleration due to gravity and M(r)
is the mass enclosed by a spherical shell of radius r.

The overall

Figure 3.4 The forces acting

on a shell of gas at a given

radius within a gas cloud, such

as a cluster atmosphere.

pressure force on the parcel of gas is the difference between the
forces pushing on its inner and outer edges:

Fgas = [P (r) +ΔP ]ΔA− P (r)ΔA = ΔP ΔA (3.4)

where P (r) is the pressure at the inner edge, ΔP is the difference in gas
pressure between the inner and outer edges, and ΔA is the surface area of
the inner and outer edges of the purple shaded region on which the forces
act (assumed to be the same, because Δr is assumed to be very small). We
can express this in terms of a pressure gradient:

Fgas =
dP

dr
ΔrΔA (3.5)

What happens in a situation where the pressure is the same at all radii
within the atmosphere (i.e. there is no pressure gradient)?

The net pressure force on a gas parcel will be zero, and so the
gravitational force dominates and the gas falls in towards the centre.

In that situation, gravitational collapse would lead to infalling gas heating
up and increasing its pressure, so that a new equilibrium would establish
itself. We therefore expect a pressure gradient in the ICM with higher
pressure towards the centre; this is indeed what X-ray observations show.

The equation of hydrostatic equilibrium (which also applies to planetary
atmospheres and the interior of stars) can be derived by setting the sum of
the two (balanced) forces to zero, and noting that ΔM = ρ(r)ΔrΔA,
where ρ is the gas density:

dP

dr

ΔM

ρ(r)
= −gΔM (3.6)
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Substituting in the previously given definition of g leads to the equation of
hydrostatic equilibrium.

Hydrostatic equilibrium

dP

dr
= −GM(r)ρ(r)

r2
(3.7)

It is important to recall that here, M(r) is the total mass at radii less than
r, and not just the gas mass. If we also remember that gas temperature
and density, and therefore gas pressure (via the ideal gas law), can be
measured from X-ray observations, then Equation 3.7 tells us that X-ray
observations can be used to study the overall distribution of mass in
clusters, just as gravitational lensing can (as discussed in Chapter 2).
Example 3.1 develops this idea further.

Example 3.1

Derive an expression for how the cluster mass profile, M(r), depends on the
profiles of gas density, ρ(r), and temperature T (r), which can be measured
via X-ray observations. Assume that the mean particle mass 〈m〉 = 0.6mp

(where electrons, protons and ions all contribute to this average).

Solution

First we rearrange Equation 3.7 for mass, to get

M(r) = − r2

Gρ(r)

dP

dr

Now we need to use the ideal gas law to relate pressure to temperature and
density:

P =
ρ(r)kBT

〈m〉
An expression for the pressure gradient is obtained by differentiating using
the product rule:

dP

dr
=

kB
〈m〉

(
ρ(r)

dT

dr
+ T (r)

dρ

dr

)
This can now be substituted into the expression for M(r):

M(r) = − r2kB
Gρ(r)〈m〉

(
ρ(r)

dT

dr
+ T (r)

dρ

dr

)
which can be written a little more tidily as

M(r) = − kBr
2

G〈m〉
(
dT

dr
+

T (r)

ρ(r)

dρ

dr

)
(3.8)
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Equation 3.8 is commonly put into practice with modern X-ray
observations; an example is shown in Figure 3.5.

Figure 3.5 Cumulative total mass profiles for 10 galaxy clusters obtained

from observations with the XMM-Newton X-ray observatory, using the

hydrostatic equilibrium method.

Try Exercise 3.1 for some practice working with Equation 3.8.

Exercise 3.1

An X-ray observation measures a cluster to have a constant temperature of
T = 8× 107K and a gas density distribution that varies with radius as

ρ(r) = ρ0

(
1 +

r

rc

)−2

where rc = 150 kpc and ρ0 is an unknown constant.

Show that M(r) does not depend on ρ0 and calculate the total mass of the
cluster within a radius of (a) 50 kpc and (b) 1Mpc.
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3.1 Finding and studying galaxy clusters

3.1.3 The Sunyaev–Zeldovich effect
Over the last decade, another method of studying the intracluster medium
and galaxy-cluster mass distributions has rapidly become a very powerful
tool. Millimetre-wave observations of a scattering process known as the
Sunyaev–Zeldovich effect (named for the physicists Rashid Sunyaev
and Yakov Zeldovich who first described it) provide a complementary way
of finding clusters and measuring their pressure profiles.

The Sunyaev–Zeldovich (SZ) effect is a scattering process involving the
photons of the cosmic microwave background (CMB), which are present at
all locations and epochs across the Universe. The ionised gas particles in
the intracluster medium interact with CMB photons that pass through,
and energy is exchanged between them.

Exercise 3.2

Consider a CMB photon in the low redshift Universe, with ν = 160GHz,
interacting with (a) an ICM proton, and (b) an ICM electron. Compare
the photon energy and particle rest-mass energies and comment on the
likely direction of energy transfer.

The process involved is inverse Compton scattering (see Cosmology
Chapter 8). The CMB photons gain a small amount of energy from the
cluster ions and electrons, which means that their frequency increases
(a blue shift). Figure 3.6 shows the SZ effect produced by galaxy clusters.

Figure 3.6 The Sunyaev–Zeldovich effect: an incoming CMB photon

(red line) is scattered to higher energy (blue line) by interacting with an

energetic ICM electron.
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It is useful to consider the typical distance travelled by a photon passing
through the centre of a cluster before undergoing a scattering interaction.
This is the same as the mean free path for Thomson scattering (see
Cosmology Chapter 1):

λ =
1

neσT
(3.9)

where σT is the Thomson cross-section.

Typical electron number densities at cluster centres are ∼105m−3, which
leads to λ ∼ 5Mpc. This is a little larger than typical cluster diameters,
but of the same order of magnitude. So the majority of CMB photons will
pass through a cluster without scattering, but a significant minority –
enough to produce an observationally detectable effect – will experience
scattering.

The net result of the interaction for the scattered photons is a small shift
in frequency, Δν, which is related to the typical particle energies involved
in the collision:

Δν

ν
≈ kBT

mec2
(3.10)

Exercise 3.3

Calculate the typical frequency shift for a photon scattering off electrons in
a gas with T = 5× 107K. Comment on how this compares with the typical
fractional deviation of cosmological anisotropies of the CMB of ∼10−5.

As the previous exercise shows, the SZ effect is expected to be easily
detectable compared to other variations in the cosmic microwave
background. Thousands of galaxy clusters have now been detected via this
effect, both as a by-product of CMB missions, such as ESA Planck , and
via dedicated experiments that can provide more detailed information.

Figure 3.7 shows maps of the SZ effect in the direction of two known
galaxy clusters. The quantity that is being plotted, which is the signal
measured by SZ observations, is referred to as the Compton
y-parameter. It is defined as

y =
kBσT
mec2

∫ l2

l1

ne(r)T (r) dl (3.11)

where ne(r) and T (r) are the electron number density and temperature
profiles of the galaxy cluster (which may vary with radius, as discussed in
Section 3.1.2) and the integral is along the line of sight through the cluster
(i.e. l1 and l2 are the near and far edges of the cluster along our line of
sight at a particular sky position).
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3.2 Galaxy evolution in clusters

Figure 3.7 Maps of the Sunyaev–Zeldovich effect for two galaxy clusters:

(a) the Coma cluster, and (b) cluster RX J1347.5–1145. In (a) blue indicates

no detected SZ signal while orange to black shows an increasingly strong

signal. In (b) purple corresponds to no signal, while the range of colours from

turquoise to white indicates an increasingly strong SZ signal.

What physical quantity can you infer from Equation 3.11 must be
proportional to the Compton y-parameter?

By the ideal gas law, since Compton y depends on the product of
electron number density and temperature, it must be proportional to
the pressure of the ICM gas.

One quantity that is not present in the formula for Compton y is the
distance to the cluster, or its redshift. The strength of the dip and peak in
the CMB emission caused by SZ scattering is independent of distance.

This is very different from most other signals in astronomy, where distant
objects appear fainter, and is a key reason why SZ observations are
important for studying galaxy clusters. SZ measurements currently
provide the best way to study the most distant galaxy clusters, being able
to see further into the distant Universe than X-ray telescopes.

3.2 Galaxy evolution in clusters
Observations of galaxy clusters across the electromagnetic spectrum,
including X-ray and SZ observations of the intracluster medium, have
greatly advanced our understanding of the environments in which galaxies
evolve. In this section we will examine the differences between galaxies
that evolve in dense cluster environments and isolated galaxies.
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3.2.1 Comparing galaxies in different
environments

Many observational studies have investigated how the properties of
galaxies depend on the environment in which they are found. Figure 3.8
shows a famous relationship first identified by Dressler (1980), known as
the morphology–density relation: the proportions of galaxies of
different appearance (structural type) depend on the surrounding galaxy
density, i.e. whether the galaxy is isolated or in a rich cluster.

Figure 3.8 The galaxy morphology–density relation, showing how the

fraction of elliptical (red) and spiral galaxies (blue) compared to the total

galaxy population depends on environmental density. (Note that the plotted

quantity is not a 3D density but the measured number of galaxies per unit

area on the sky, which is assumed to scale with the true density.)

What is different about the likely evolutionary histories of spiral and
elliptical galaxies, and how might that depend on environment?

A spiral structure usually forms as a result of rotation during the
process of gravitational collapse to form galaxies. Elliptical galaxies are
thought to be the result of galaxy mergers. The rate of such mergers is
likely to be higher in environments of high galaxy density, i.e. clusters.

It is now well established that although both spiral and elliptical galaxies
are found in clusters and in isolated environments (sometimes referred to
as ‘field galaxies’), the proportion of spiral galaxies decreases with
environmental richness (i.e. number of near neighbours). The changes in
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3.2 Galaxy evolution in clusters

typical galaxy morphology go together with other differences: in
particular, the rate of star formation and the quantity of gas (both
molecular and atomic) that forms the fuel for star formation are both
systematically lower in cluster galaxies than in isolated galaxies.

Figure 3.9 shows a comparison of the stellar mass functions for cluster and
isolated galaxies, compiled from a very large survey of ∼10 000 galaxies.
The solid black line in both panels is the same and indicates the total
stellar mass function for all of the galaxies. The two panels show the
subset of blue and red galaxies (as observed in the optical), corresponding
roughly to spirals and ellipticals, with the square and circle symbols
showing cluster and isolated subsets, respectively, for each panel.

Figure 3.9 The stellar mass functions for (a) blue (mainly spiral) galaxies,

and (b) red (mainly elliptical) galaxies, in environments of varying richness.
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Exercise 3.4

Answer the following questions based on Figure 3.9:

(a) State which type of galaxy is more common at the low-mass and
high-mass ends of the mass range.

(b) Are red (mainly elliptical) galaxies in the 1010–1011M" range more
commonly found in clusters or isolated environments?

(c) Are blue (mainly spiral) galaxies across all masses more commonly
found in clusters or isolated environments?

(d) Is the shape of the mass function the same for cluster and isolated
galaxies?

Research into galaxy environments, such as that shown in Figure 3.9, has
shown that multiple processes must be operating to transform spiral
galaxies into ellipticals. Firstly, the comparative lack of very massive
spirals shows that mergers are an important part of forming the most
massive galaxies. Isolated galaxies have a lower probability of merging and
so are more likely to retain a spiral structure.

But mergers are not the only process that affects how galaxies evolve. The
next two sections discuss (i) the effect of cluster environment and ICM on
gas supply and star formation, and (ii) the effect of galaxy feedback
processes linked to the central supermassive black hole.

3.2.2 Physical processes transforming
galaxies in clusters

In addition to disruptive galaxy mergers caused by the higher local density
of galaxies, there are several other processes associated with cluster
environments that influence galaxy evolution, primarily by removing the
atomic and molecular gas that provides the fuel for continued star
formation. Processes that can remove gas include gravitational interaction
(e.g. tidal forces), either with the cluster halo or other galaxies,
hydrodynamical processes caused by interaction of the galaxy with the
intracluster medium, and the suppression of infall of gas that might
otherwise replenish the fuel supply for star formation.

Tidal forces as galaxies interact with each other in clusters are thought to
be responsible for some stars escaping from their galaxy. One form of
evidence for this process is the presence of intracluster light – starlight
spread out through regions in between individual galaxies within clusters.
Figure 3.10 shows an example of intracluster light mapped sensitively by
JWST – the intracluster light is the smooth grey-black region
encompassing the bright galaxies.
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3.2 Galaxy evolution in clusters

Figure 3.10 A JWST image of the cluster SMACS 0723 revealing

intracluster light as the smooth grey-black regions between individual galaxies.

In cluster environments a process known as ram pressure stripping is
thought to be most important for removing gas from galaxies as they fall
inwards under the influence of a cluster’s gravitational field and interact
with its ICM. The basic idea is that as a galaxy travels through the
intracluster gas it experiences a drag force, which is referred to as ram
pressure. In some cases this force will exceed the gravitational force that
binds the atomic and molecular gas to the disc of the galaxy.

The ram pressure acts in the opposite direction to the direction of galaxy
motion so it can drive gas out of the galaxy, creating a characteristic tail of
matter. Its magnitude, Pram, is given by

Pram = ρv2 (3.12)

where ρ is the gas density at the galaxy’s location within the ICM, and v is
the speed at which the galaxy is travelling relative to the cluster.

To unbind the gas from the galaxy disc, the ram pressure needs to exceed
the gravitational force per unit area binding the gas to the galaxy’s stellar
disc, Fgrav/A, which can be roughly approximated as

Fgrav

A
= 2πGΣ∗Σgas (3.13)

where Σ∗ and Σgas are the surface density of stars and gas respectively,
i.e. the mass of stars or gas per unit area. These quantities can either refer
to the average surface density across the entire galaxy disc, or to localised
measurements at a particular galaxy radius of interest.
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What is the average value of Σ∗ (in units of M" kpc−2) for a spiral
galaxy of stellar mass M∗ = 109M" and disc radius R∗ = 40 kpc?

Taking the mass divided by the area of (one side of) the galaxy disc
(πR2∗) gives Σ∗ ∼ 2× 105M" kpc−2.

Figure 3.11 illustrates ram pressure stripping in action, as measured by the
International LOFAR Telescope. Two cluster galaxies are shown in the
process of losing their atomic gas via this process: these objects are
sometimes referred to as ‘jellyfish galaxies’ because of the long gas tails
extending from the optical galaxy.

Figure 3.11 Examples of radio-observed ‘jellyfish galaxies’ with extended

tails of atomic hydrogen (shown in red, superimposed on optical images of the

galaxies) thought to be produced via ram pressure stripping.

Example 3.2 explores the physics of ram pressure stripping in a nearby
galaxy cluster.

Example 3.2

Two galaxies, NGC 4388 and NGC 4548 (which is also known as
Messier 91), are both located in the Virgo cluster. Assume that the gas
density profile of the Virgo cluster can be described by

ρ(r) = ρ0

(
1 +

r2

r2c

)−3β/2

(3.14)

where r is the cluster radius, ρ0 = 1.7× 10−22 kgm−3, β = 0.5 and
rc = 50 kpc.

Table 3.1 lists some key properties for the two galaxies. Use this
information to calculate whether it is likely that the atomic gas in each
galaxy is being stripped by ram pressure at its current location.
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3.2 Galaxy evolution in clusters

Table 3.1 Galaxy properties. Columns are galaxy name, distance from cluster

centre, estimated speed relative to the cluster, stellar mass, atomic gas mass, and

radius of the stellar disc.

Galaxy r velocity M∗ Mgas R∗
/kpc /kms−1 /1010 M" /108 M" /kpc

NGC 4388 363 ∼1500 1.1 6.0 17.6
NGC 4548 461 ∼400 4.2 4.5 12.7

Solution

To calculate the ram pressure acting on each galaxy, we first need to
determine ρ at its cluster location. To do this we substitute in the given
values, including the cluster radius from Table 3.1, into Equation 3.14.

For NGC 4388, at r = 363 kpc

ρ =
(
1.7× 10−22 kgm−3

)(
1 +

(363 kpc)2

(50 kpc)2

)−3×0.5/2

= 8.57× 10−24 kgm−3

Note that we don’t need to convert the r values to metres, since the unit
conversions would cancel out. Repeating this calculation for NGC 4548, at
r = 461 kpc, gives ρ = 6.02× 10−24 kgm−3.

We can now use the given velocity estimates to determine the ram pressure
of the two galaxies using Equation 3.12.

For NGC 4388

Pram =
(
8.6× 10−24 kgm−3

) (
1500× 103ms−1

)2
= 1.93× 10−11 Pa

For NGC 4548

Pram =
(
6.0× 10−24 kgm−3

) (
400× 103ms−1

)2
= 9.63× 10−13 Pa

So the ram pressure is much higher for NGC 4388 than for NGC 4548.

Next we need to work out Σ∗ and Σgas to be able to calculate the force
binding the gas to the galaxy disc using Equation 3.13. We can use the
same method as before, but this time converting to SI units.

For NGC 4388

Σ∗ =
1.1× 1010M" × 1.99× 1030 kgM−1

"
π
(
17.6 kpc× 3.086× 1019mkpc−1

)2
= 0.0236 kgm−2

For NGC 4548

Σ∗ =
4.2× 1010M" × 1.99× 1030 kgM−1

"
π
(
12.7 kpc× 3.086× 1019mkpc−1

)2
= 0.173 kgm−2

Repeating these calculations using the gas mass values gives
Σgas = 1.3× 10−3 kgm−2 and 1.9× 10−3 kgm−2.
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We can now calculate the binding force per unit area via Equation 3.13.
These are given in Table 3.2.

Table 3.2 Comparing ram pressure and binding force for Virgo galaxies.

Galaxy Σ∗ Σgas F grav/A P ram

/kgm−2 /kgm−2 /×10−13 Pa /×10−13 Pa
NGC 4388 0.024 0.0013 0.13 190
NGC 4548 0.17 0.0019 1.4 9.6

For NGC 4388 the ram pressure is estimated to be more than 1000 times
the binding force, and we would expect strong ram pressure stripping to
operate. For NGC 4548 the ram pressure is lower and the binding force
higher than for NGC 4388, but the ram pressure still outweighs the
binding force, and so can remove gas from the galaxy.

3.2.3 Radiative cooling of cluster gas
Another way in which the ICM influences galaxies is via the effects of gas
cooling on the central galaxy of the cluster. Many clusters have a
dominant massive galaxy at the centre of the cluster, which is also
typically the most optically bright, and is known as the brightest cluster
galaxy (BCG). The cluster centre is also the location at which the X-ray
emission from the ICM is strongest.

The cluster X-ray luminosity corresponds to the rate at which energy is
being carried away by radiation, so it is equivalent to the rate by which the
ICM gas is losing energy. In other words, the intracluster gas is cooling,
and the rate at which energy is being lost is highest at the cluster centre.

If the energy lost to X-ray radiation is not replenished, the temperature of
the central gas will decrease over time. This has important consequences
for the central galaxy because a decrease in temperature corresponds to a
decrease in the ICM gas pressure over time, via the ideal gas law.

Why is the distribution of gas pressure in a cluster important?

Hydrostatic equilibrium requires the pressure gradient of the ICM to
balance the gravitational forces acting on the cluster gas at a particular
radius. If pressure decreases, then gas will move inwards under the
influence of gravity.

The discovery of bright, centrally peaked X-ray distributions in clusters led
to the realisation that this implies a slow inward flow of rapidly cooling gas
into BCGs, a phenomenon known as a cooling flow. Cooling flows should
lead to the presence of cold molecular and atomic gas in central galaxies,
as well as increased star formation.

Whether or not a cooling flow is present in a particular cluster will depend
on the cooling time of the central gas, which (from Cosmology Chapter 11,
assuming three degrees of freedom for an ionised gas) is defined as

tcool =
3nkBT

2Λcool
(3.15)
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where n is the particle number density (accounting for both electrons and
ions), and Λcool is the rate of energy loss per unit volume.

If X-ray radiation is the dominant cooling pathway, how would you
expect Λcool to be related to the X-ray luminosity, LX?

The X-ray luminosity is the total energy loss per unit time, with units of
J s−1. Λcool is the energy loss rate per unit volume, and so the cooling
rate for a particular region of X-ray emitting gas is Λcool = LX/V , where
V is the volume of the region considered.

The following example explores typical cooling times in galaxy clusters.

Example 3.3

Figure 3.12 shows the gas density and temperature profiles for Abell 1795
(based on analysis by Cavagnolo et al., 2009). The X-ray luminosity of the
inner region (R < 20 kpc) is L = 1.0× 1037W.

Figure 3.12 (a) Gas number density and (b) temperature as a function of

radial distance from the cluster centre for Abell 1795.
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By estimating the average temperature and number density in the inner
region (r < 20 kpc), estimate the cooling time for this region. Assume
electrons make up 50% of the particles.

If Abell 1795 has existed for most of the age of the Universe, comment on
whether a cooling flow is expected.

Solution

The number density and temperature can be roughly estimated from each
plot by reading off values at the midpoint radius for the region being
considered, i.e. at ∼10 kpc.

The plotted density is the electron number density in units of cm−3, and
the mean value in the inner 20 kpc is approximately 0.050 cm−3. More
precisely, it is a little below this value at 10 kpc, but it is difficult to make
a more accurate estimate with the logarithmic axis labels as given here.
1 cm−3 = 106m−3, and so the estimated mean value corresponds to
50 000m−3. Assuming electrons make up 50% of the particles, then the
total number density is 100 000m−3.

The temperature plot has units that might seem a little unexpected. X-ray
astronomers often pre-multiply their temperatures by kB and work in units
of keV because that gives a quantity representing temperature that avoids
large exponents. However, the result is technically an energy, not a
temperature!

Reading from the plot, an estimate of kBT at ∼10 kpc is ∼3.4 keV.
Converting to SI units gives 5.4× 10−16 J. If you are interested to know
the value in the more usual units of kelvin (K) you can divide by kB.

We now need to obtain the cooling function, Λcool. We are considering a
sphere of radius 20 kpc, and so V = (4/3)π (20 kpc)3 = 9.8× 1062m3

≈ 1063m3, using the appropriate conversion. Therefore, Λcool = L/V
≈ 1.0× 10−26Wm−3.

We now have all of the information needed to calculate tcool using
Equation 3.15.

tcool ≈
3× (

100 000m−3
)× (5.4× 10−16 J)

2× 1.0× 10−26Wm−3
= 8.1× 1015 s

Converting to years, we find that the cooling time in the central region of
Abell 1795 is ∼2.6× 108 years, or ∼0.3Gy. Since the age of the Universe
is of order 14Gy, we would expect a cooling flow to have developed in this
cluster. This is indeed what X-ray observations show for Abell 1795.

Figure 3.13 shows a set of cooling time profiles for a representative sample
of nearby galaxy clusters measured from Chandra observations. You will
see that in general, tcool drops below the age of the Universe in the inner
10–100 kpc, with very short cooling times at the centre.
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Figure 3.13 A sample of cooling time profiles for nearby galaxy clusters.

Early investigations of cooling flows suggested that the amount of cold gas
expected to be present in the central galaxy of a cluster as a result of this
process would be extremely large. The rate at which gas should become
sufficiently cold (and dense) to form stars in the central galaxy is known as
the mass deposition rate, Ṁcool, calculated as

Ṁcool =
Mgas(r < rcool)

tcool
(3.16)

where rcool is typically defined as the radius within which the cooling time
is less than the Hubble time (so that cooling can be significant over the
cluster’s lifetime).

For a cluster such as Abell 1795, rcool is of order tens of kpc and the
expected rate of deposited cold gas into the central galaxy would be
Ṁcool ∼ 100M" y−1. It is possible to convert this into a rate of predicted
star formation, assuming a typical star formation efficiency (e.g. estimated
from studies of the Milky Way).

Much observational effort has been devoted to testing whether the high
star-formation rates and cold gas in central galaxies that such calculations
imply is indeed present and affecting central galaxy evolution. Figure 3.14
shows that – for Ṁcool " 20M" y−1 – star-formation rate does depend on
the predicted rate of mass deposition calculated from Equation 3.16.
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Figure 3.14 A comparison of star-formation rate in a sample of BCGs with

the mass deposition rates inferred from their X-ray luminosity. The dark

turquoise region represents the best model fits to the data, while the lighter

regions show a measure of the scatter in the data.

The next exercise compares the star formation of BCGs shown in
Figure 3.14 with that of the Milky Way.

Exercise 3.5

The average star-formation rate of the Milky Way over its recent history is
∼2M" y−1, while the rate of gas falling into the Milky Way from its wider
environment (the Local Group) is <1M" y−1. Consider a typical bright
galaxy cluster whose mass deposition rate, inferred from its X-ray
luminosity, is 200M" y−1. Use Figure 3.14 to infer the expected
star-formation rate in the cluster’s central galaxy. What is different about
the behaviour of this BCG and the Milky Way, and how might this affect
their subsequent evolution?

The previous exercise shows that the evolution of a cluster-centre galaxy is
strongly affected by the behaviour of the ICM. If the X-ray inferred Ṁcool

values are correct, then a BCG should contain an increasing and very large
reservoir of cold gas.

But it is important to emphasise that Ṁcool is the inferred rate of mass
deposition only if the energy lost to X-ray radiation is not in some way
replenished. In fact, although BCGs do contain some molecular gas, they
do not typically contain enough to match the expected deposition rates.

There is now considerable evidence that the lost energy is at least partially
replenished via the processes of galaxy feedback, which is explained in the
next section.
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3.2.4 Galaxy feedback in clusters
Many galaxies in rich environments, and especially BCGs, host active
galactic nuclei (AGN), in which accretion of material onto the central
supermassive black hole leads to high-energy radiation and outflows of gas.
The energetic processes associated with AGN – particularly with the jets
of radio galaxies – transport energy outwards from galaxy centres, which
can heat up the intracluster gas and compensate for the energy lost to
X-ray radiation discussed in the previous section. In Chapter 4 you will
consider the physics of AGN jets in more detail, but here we focus on how
they can affect galaxies in clusters.

Figure 3.15 shows an example of this energy transport in action:
radio-emitting bubbles produced by the AGN are shown in red, embedded
in the intracluster medium (blue), and extend for a large distance beyond
the central galaxy that is the origin of the outflowing material.

Figure 3.15 A BCG contains an AGN that produces jet-driven outflows

(red regions in this image) extending to a large distance.

There is strong observational evidence that radio galaxies, like the example
shown in Figure 3.15, distribute a lot of energy away from the central
region of the BCG and into the surrounding ICM. It is thought that a
galaxy feedback cycle is in operation, as shown in Figure 3.16: gas
cooling from the ICM falls into the central galaxy, feeding the central black
hole and driving the radio jets and bubbles. In turn this outflow heats the
surrounding gas, which limits the amount of cooling that can take place.
Clusters could either go through repeated cycles of cooling and heating, or
remain in a state where the two processes are roughly in balance.
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Figure 3.16 The cycle of AGN feedback in galaxy clusters.

There is a great deal of observational evidence that such a feedback cycle
operates in nearby galaxy clusters. One compelling form of evidence comes
from comparing estimates of the typical lifetimes of radio galaxies with
cluster cooling times (tcool). It is possible to estimate the age of a radio
galaxy using t = d/v, where d is the length from the nucleus to the outer
edge (i.e. the maximum distance travelled by the outflow), and v is an
assumed expansion speed. The slowest likely expansion speed is the local
sound speed in the ICM, given by

cs =

√
5kBT

3〈m〉 (3.17)

where 〈m〉 = 0.6mp is the mean particle mass.

Exercise 3.6

Make an estimate of the age of a radio galaxy whose emission extends to a
radius of 200 kpc within a galaxy cluster of temperature 5× 107K.
Comment on how this would change if the radio-galaxy expansion speed is
supersonic by a factor of 2 or 3. Compare your estimates to typical cooling
times in cluster centres.

As well as considering individual clusters, we can also look at the whole
population of clusters, and investigate whether all of the AGN activity in
the local Universe can provide enough heating to compensate for the
energy lost to X-ray radiation.
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In Cosmology Chapter 11 you were introduced to luminosity functions,
which describe how the number density of galaxies depends on their
luminosity. The following example uses the luminosity function of galaxy
clusters to make a rough estimate of the total rate of energy loss that
would need to be compensated for by heating.

Example 3.4

Assume that the number density of galaxy clusters, nclus, within the range
of X-ray luminosities LX to LX + dLX is given by

nclus(LX) dLX =
n0

LX∗

(
LX

LX∗

)−α

dLX (3.18)

where α = 1.8, n0 = 4.5× 10−7Mpc−3 and LX∗ = 3.0× 1037W are
constants (the slope and normalising factors for number density and
luminosity).

Calculate the total rate of energy loss via X-ray radiation per cubic
megaparsec, assuming a typical X-ray luminosity range of 1035–1038W.

Solution

To sum up the luminosity produced by all of the galaxy clusters in a given
volume, it is necessary to perform an integral over Equation 3.18.

If we simply took the integral of the expression provided, this would give
us the total number density of galaxy clusters falling within the given
luminosity range. The luminosity density (total luminosity per unit
volume), εL, for a particular LX range is given by multiplying
Equation 3.18 by LX:

εL(LX) dLX = n0
LX

LX∗

(
LX

LX∗

)−α

dLX

= n0

(
LX

LX∗

)1−α

dLX

We can now sum up the luminosity density over the full luminosity range
by integrating this expression over the given range of X-ray luminosities:

εtot =

∫ L2

L1

n0

(
LX

LX∗

)1−α

dLX

where L1 and L2 correspond to the X-ray luminosity range given in the
question.

Taking the constants outside the integral gives

εtot =
n0

L1−α
X∗

∫ L2

L1

L1−α
X dLX

which becomes

εtot =
n0

L1−α
X∗ (2− α)

[
L2−α
X

]L2

L1
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We can now substitute in the given values of n0, LX∗ , α, and the upper
and lower X-ray luminosity limits of L1 = 1035W and L2 = 1038W, which
gives a total luminosity density of εtot = 6.4× 1031WMpc−3.

Example 3.4 leads to an estimated rate at which clusters lose energy of
∼6× 1031WMpc−3. This can be compared to the possible rate at which
AGN could reheat the gas to replenish the energy loss. The rate of heating
potentially available from a pair of AGN jets can be estimated as
equivalent to the mechanical power of the jets, i.e. the energy per unit time
travelling up the jets, usually given the symbol Q (to avoid confusion with
pressure, P ). The next exercise explores the amount of jet heating
available from AGN in the local Universe.

Exercise 3.7

An approximation of the number of radio galaxies, nRG, within a range of
jet power, Q to Q+ dQ, in the Universe out to z ≈ 0.5 is given by

nRG(Q) dQ =
n0

Q∗

(
Q

Q∗

)−β

dQ

where the slope β = 1.65, the number density normalisation
n0 = 1.3× 10−6Mpc−3 and the jet power normalisation Q∗ = 1037W.

Using a similar approach to Example 3.4, make an estimate of the total
heating rate per unit volume, εRG, from radio galaxies in the range of jet
power between 1035W and 1038W.

Compare your heating rate estimate to the rate of energy loss from clusters
estimated in Example 3.4.

As suggested by the various (fairly rough) comparisons in this section, it is
now thought that heating greatly reduces the amount of gas that cools and
forms stars in BCGs. The biggest and most massive galaxies in the
Universe have their growth halted by the feedback from AGN jets.

3.3 Summary of Chapter 3
• Galaxy clusters can be characterised by their optical richness, which is

a measure of the number of galaxies they contain and scales with the
total cluster mass (dominated by dark matter).

• The intracluster medium (ICM) is a low-density gas that pervades
the space between galaxies in a cluster.

• The ICM is hot and emits X-rays via the thermal bremsstrahlung
process, as well as via electronic transitions between energy levels of
ions. The rate at which X-rays are produced is given by

ε = 1.4× 10−40gffZ
2neniT

1/2Wm−3 (Eqn 3.2)
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3.3 Summary of Chapter 3

• The ICM is in a state of hydrostatic equilibrium, in which
gravitational and pressure forces balance at each radius:

dP

dr
= −GM(r)ρ(r)

r2
(Eqn 3.7)

• The assumption of hydrostatic equilibrium means that X-ray measured
profiles of gas density and temperature can be used to measure the total
mass distribution in a cluster, according to

M(r) = − kBr
2

G〈m〉
(
dT

dr
+

T (r)

ρ(r)

dρ

dr

)
(Eqn 3.8)

• The Sunyaev–Zeldovich effect (SZ effect) is a shift in the observed
frequency of cosmic microwave background photons that pass through
galaxy clusters, caused by inverse Compton scattering. The signal
strength is proportional to gas pressure, and is independent of distance,
so it can be used to study distant clusters.

• Cluster environment influences how galaxies evolve by increasing the
likelihood of galaxy mergers, tidal forces, and processes related to the
influence of the ICM.

• Cluster galaxies are more likely to be ellipticals, and isolated galaxies
are more likely to be spiral – this is known as the
morphology–density relation.

• Ram pressure stripping can remove gas from galaxies as they travel
through the ICM, with the pressure related to the galaxy’s speed:

Pram = ρv2 (Eqn 3.12)

Gas will be stripped from the galaxy if Pram exceeds the gravitational
force per unit area binding the gas to the galaxy disc:

Fgrav

A
= 2πGΣ∗Σgas (Eqn 3.13)

• The high X-ray luminosities of cluster centres lead to energy loss and
short cooling times in the central region:

tcool =
3nkBT

2Λcool
(Eqn 3.15)

• If the energy lost to X-ray radiation isn’t replenished then a cooling
flow will develop and cold gas from the ICM will be deposited onto the
central galaxy of the cluster, leading to enhanced rates of star formation
in that galaxy.

• It is now known that galaxy feedback via powerful jets from active
galactic nuclei heats the intracluster medium and balances cooling. This
feedback helps to regulate star formation so that the most-massive
galaxies grow more slowly than would otherwise be expected.
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4.1 Observing black-hole jets

Chapter 4 Black-hole jets
Black holes are now known to be ubiquitous throughout the Universe, with
every galaxy having its own central supermassive black hole with a mass
millions to billions of times larger than that of the Sun. The in-fall
(accretion) of gas onto black holes in galaxy centres causes energetic
outflows in the form of jets and winds, as well as the production of large
amounts of radiation across the electromagnetic spectrum. As you saw at
the end of the previous chapter, black-hole jets have an important
influence on how massive galaxies evolve.

This chapter will focus on the physics of black-hole jets. Jets are produced
by both stellar-mass and supermassive black holes, but in this chapter we
will be considering only extragalactic jets from SMBHs in distant galaxies.
As with previous chapters you will explore both small-scale processes that
influence how we observe jets, and large-scale processes that transport
energy within and beyond the galaxy environments of SMBHs.

Objectives
Working through this chapter will enable you to:

• describe the observed properties of radio galaxies and radio-loud quasars

• summarise the evidence for relativistic bulk speeds for black-hole jets

• explain how special relativity affects observations of jets

• describe and solve problems relating to the process of synchrotron
radiation

• solve problems related to the total internal energy of radio galaxies, the
nature of how jets are powered and the energy available for galaxy
feedback.

4.1 Observing black-hole jets
The first identified jet originating from a black hole was a ‘curious straight
ray’ seen in optical images of the central galaxy in the Virgo cluster,
Messier 87 (M87) by the astronomer Heber Curtis in 1918, over a decade
before Hubble’s discovery of the expansion of the Universe. The advent of
radio astronomy after the Second World War led to the discovery of large
numbers of jets emitting at radio wavelengths. The outflowing material in
M87 has now been studied by many facilities including, most recently, the
Event Horizon Telescope, which imaged its black-hole shadow. Figure 4.1
shows a montage of radio observations of the M87 jet, revealing its highly
complex structure on many different size scales, extending far beyond the
optical galaxy itself.
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Chapter 4 Black-hole jets

Figure 4.1 Four observations of the M87 radio jet from much less than a

parsec to kiloparsec scales, as seen at various radio frequencies by the Very

Large Array (VLA), Very Long Baseline Array (VLBA), Global 3mm VLBI

Array (GMVA) and Event Horizon Telescope (EHT).

M87 is a fascinating example of black-hole behaviour because, as one of
the nearest examples of a black-hole jet, we can observe not only the
currently active jet, but also fainter radio emission on much larger scales,
which originates from plasma transported up the jet over very long
timescales. Figure 4.2 compares this larger-scale radio structure – which is
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4.1 Observing black-hole jets

spread throughout the central regions of the Virgo cluster – to the VLA
image of the 3000 light-year jet shown in Figure 4.1.

Figure 4.2 Low-Frequency Array (LOFAR) image of the plasma from the

M87 jet on galaxy-cluster scale, compared with the 3000 light-year jet

structure shown in Figure 4.1.

Galaxies possessing large-scale radio-emitting jets are known as radio
galaxies and radio-loud quasars (depending on whether they also
possess the optical characteristics of quasars). These two classes form part
of the population known as active galaxies, which are systems where the
electromagnetic radiation in some part of the spectrum outshines the
starlight from the galaxy (see Chapter 1).

The difference between radio galaxies and radio-loud quasars relates to the
properties of the central active galactic nucleus (AGN). Quasars, which can
be either radio-loud or radio-quiet (not possessing large-scale jets), have an
optically bright central region (nucleus) whereas radio galaxies do not.
This is related to the in-fall of material onto the central black hole, and is
also affected by the galaxy’s orientation relative to us. We return to the
influence of orientation on the brightness of AGN features in later sections.

Modern radio surveys reveal that radio-emitting jets are present in millions
of galaxies, and that all massive galaxies are likely to have gone through a
phase of jet production. In the next sections you will learn about the
physics of these jets. In particular, we will discuss the evidence that the
outflowing material travels at close to the speed of light, and the reasons
why it has long been accepted that the central engine producing the jets
must be a supermassive black hole.
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4.1.1 Evidence for relativistic outflows
One of the reasons why radio jets are of interest is that they are the most
easily studied example of a relativistic outflow: there are multiple lines
of convincing evidence that the typical speed of matter travelling outward
along the jets is close to the speed of light.

The simplest evidence comes from directly observing the movement of
bright blobs of jet emission over time, and so inferring their speed.
Example 4.1 considers in what situations such direct measurements are
possible.

Example 4.1

Consider three radio galaxies, M87 (dA = 16Mpc), Centaurus A
(dA = 3.4Mpc) and Cygnus A (dA = 206Mpc), where dA is the angular
diameter distance to each galaxy. For each galaxy consider three possible
jet speeds of (i) 1000 km s−1, (ii) 0.01c and (iii) 0.9c, and for each speed
determine the angular distance in units of arcseconds that a blob of jet
material could travel in between two monitoring observations taken 5 years
apart. For simplicity, you should assume that the jet is oriented in the
plane of the sky (i.e. perpendicular to our line of sight to the galaxy, such
that all locations along the jet are the same distance from us).

Solution

For each radio galaxy, we need to determine the angular distance on the
sky that corresponds to the distance a blob of material will travel at each
speed in a time interval of 5 years.

We can first calculate the physical distance travelled for each speed, which
is the same for all of the galaxies. Using l = vt, we obtain distances of
(i) 1.58× 1014m, (ii) 4.73× 1014m and (iii) 4.26× 1016m.

To convert these physical distances to angles on the sky, we use the simple
geometric relationship θ = l/dA, where θ is measured in radians, l is the
physical distance travelled and dA is the distance to the galaxy.

Applying this relationship, and converting the resulting angles from
radians to arcseconds, gives the results in Table 4.1.

Table 4.1 Angular distances (in arcseconds) that a blob of jet material moves

on the sky over a 5-year period.

Jet speed M87 CenA CygnusA

(i) 1000 km s−1 6.6× 10−5 3.1× 10−4 5.1× 10−6

(ii) 0.01c 2.0× 10−4 9.3× 10−4 1.5× 10−5

(iii) 0.9c 0.018 0.084 0.0014

The angles on the sky that jet material can travel on a 5-year timescale are
therefore very small: only fractions of an arcsecond.
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The previous example demonstrates that observations of very high angular
resolution are needed to measure the motion of jets directly. The most
widely used radio telescopes have the capability of distinguishing features
on scales of <1 arcseconds, with some specialist instruments able to see
details in the brightest jets of ∼10−3 arcseconds.

Another way of thinking about it is that if motion is detected via
long-term observations, this demonstrates that jets must be travelling at
very high speeds. Figure 4.3 shows the result of radio monitoring
observations of Centaurus A over an 11-year period in which several jet
knots (compact regions of bright emission) have moved by a very small,
but detectable, angle on the sky. Several regions of the jet are found to be
moving at apparent speeds of ∼0.5c.

Figure 4.3 The results of monitoring the Centaurus A radio jet over a

period of 11 years (after Hardcastle et al., 2003). Arrows show the direction

and apparent speed of motion for each moving knot or region of jet fluid.

Arrow lengths are scaled to indicate the speed relative to c, which is the

vertical arrow in the bottom left-hand corner.

If jet material travels at half of the speed of light, would you expect
special relativity effects, such as time dilation, to be relevant to
observations of jets?

At v = 0.5c, the Lorentz factor, γ = 1/
√

1− (v/c)2 = 1.15. Since this is
larger than 1 by a non-trivial amount (15%), effects such as time
dilation are important for interpreting observations of this jet.
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The situation gets even more interesting when some of the brightest known
jets are observed at high angular resolution. Figure 4.4 shows an example
of the phenomenon known as apparent superluminal motion – the
right-hand blob at the end of the jet emission appears to travel a distance
of over 25 light-years in a little over six years of observations.

Figure 4.4 The apparent superluminal motion of a radio jet over time. The

red region corresponds to a stationary radio-bright region near to the AGN,

with the blobs to the right moving outwards with time.

What is going on here? If material cannot travel faster than the speed of
light, then this must be some sort of optical illusion. The discussion above
might lead you to think that time dilation or similar effects may be the
cause. In fact the explanation is simpler. We have neglected to consider
the geometry of the situation, and the distance inferred in the figure does
not correct for the fact that the jet may not be oriented in the plane of the
sky. This means that if the material in the jet is travelling at relativistic
speeds then its motion in the direction towards us is nearly as fast as that
of the light that the material is emitting.

Example 4.2 considers how geometry affects the speeds we infer for
observed jets, such as the example in Figure 4.4.
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Example 4.2

Consider a jet that is oriented at an angle, θ, towards the line of sight to
the Earth, as indicated by the diagram shown in Figure 4.5. A blob of jet
material is observed to move from position A at time t1 to position B at
time t2 (where times are in the rest frame of the observer). Use basic
geometry to derive a relationship between the measured speed of the jet in
the direction perpendicular to the observer’s line of sight, vapp, and the
true speed of the jet in the direction it is travelling, V .

Figure 4.5 The geometry of the jet considered in Example 4.2. Note that dL
is very large compared to the other distances in the image.

Solution

The true distance travelled by the jet blob in time interval Δt = t2 − t1 is
VΔt. The apparent speed, vapp, measured at Earth (as, for example,
inferred from Figure 4.4) is given by the transverse distance travelled by
the jet blob in the direction perpendicular to the observer’s line of sight in
a time interval Δtobs, which is the interval between the arrival of light
signals emitted at time t1 (when the blob was at position A) and the light
emitted at time t2 (when the blob was located at B).

We can consider the arrival times of each of these two signals, t1,obs and
t2,obs, using t = d/v where v = c for the light signals, and d is the distance
from each location to the observer at Earth.
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If we define dL as the distance from the nearer location, B, to the observer,
as shown in Figure 4.5, then

t2,obs = t2 + dL/c

and

t1,obs = t1 + [dL + VΔt cos θ]/c

We can now evaluate the apparent jet speed measured by the observer at
Earth, which is the transverse distance, divided by Δtobs:

vapp =
VΔt sin θ

Δtobs
(4.1)

The observed interval between signals from the two locations,
Δtobs = t2,obs − t1,obs, so

Δtobs = t2 + dL/c− t1 − dL/c− (V/c)Δt cos θ

which simplifies to

Δtobs = Δt[1− (V/c) cos θ]

Therefore Equation 4.1 can be expanded as

vapp =
VΔt sin θ

Δt[1− (V/c) cos θ]

which simplifies to

vapp =
V sin θ

1− (V/c) cos θ
(4.2)

It is apparent from Equation 4.2 that if V/c * 1 (i.e. the jet speed is not
relativistic) then the apparent jet speed cannot be greater than the true jet
speed, because the denominator reduces to 1, and sin θ is always <1.
However, the situation is more interesting when V approaches c.

Equation 4.2 is also commonly written in terms of β = V/c, as follows:

βapp =
β sin θ

1− β cos θ
(4.3)

where βapp = vapp/c.

Exercise 4.1 gives you the chance to apply the results of Example 4.2 and
so investigate how Equation 4.3 provides an explanation for jet velocity
measurements that appear superluminal.

Exercise 4.1

Calculate the apparent jet speed, βapp, that would be measured for all
combinations of jet angle θ = [1◦, 10◦, 25◦] and (true) jet speed
β = [0.5, 0.9, 0.99].

(Hint : writing a short Python code may make this calculation easier.)
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Exercise 4.1 shows that apparent superluminal motion can be observed for
a wide range of jet speeds and source angles, provided V is an appreciable
fraction of c. The fact that apparent superluminal motion can only occur
for relativistic speeds provides one compelling form of evidence that jets
are relativistic.

4.1.2 Relativistic beaming
Now that we have some evidence that jets are relativistic we can begin to
consider how this affects other jet measurements we might make. The
Lorentz transformations (Cosmology Chapter 2) affect the relationship
between the quantities we measure in observations and the intrinsic
properties of the jet (i.e. those that would be measured by an observer
travelling with the jet). For example, if we don’t account for the Lorentz
transformations then we will make incorrect measurements of the true
length or volume of a jet, with knock-on effects if, for example, we want to
consider how much energy the jet transports.

One of the most important effects of relativity is a phenomenon known as
relativistic boosting. The visible impact of this effect is that
electromagnetic radiation from material flowing towards us at a relativistic
speed is brighter than would otherwise be expected. Conversely, emission
from material travelling away from us appears dimmer.

The radio galaxy M87 is a good example of this phenomenon. In the top
panel of Figure 4.1 the largest scale emission shows clear evidence that an
outflow is present on both sides of the nucleus, but the bright central jet is
only visible in one direction from the bright core. The asymmetry of
observed jets (despite other evidence that energy is actually being
transported in both directions) provides strong evidence that jets have
relativistic speeds, for reasons we will now explore further.

There are several effects that together contribute to the boosting of
emission from jet material travelling in a direction angled towards the
observer. Figure 4.6 shows the first effect, known as aberration, in an
everyday context involving non-relativistic speeds. Figure 4.6 The effect of

aberration of raindrops: a

stationary observer (a) sees the

rain falling vertically from the

sky, whereas from the

perspective of a moving

observer (b) the rain will be

falling at an angle.

Note that panel (b)
shows the rain as viewed in a reference frame moving with the observer
who is shown.

Aberration is the change in angle of moving objects (such as raindrops) as
seen from the perspective of observers moving at different speeds. The rain
appears to be angled towards a moving person, because they are effectively
catching up with the initially more distant raindrops. This makes it
necessary to hold the umbrella at an angle in order to stay dry.

A second important effect is that, for a moving observer, the rate at which
the rain hits the umbrella changes (this is why rain seems heavier if you
are driving on a motorway). This phenomenon is related to the Doppler
effect, in which the frequency of waves (such as the sound waves produced
by an ambulance zooming past) is changed by relative motion.
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Both aberration and the Doppler effect are important in non-relativistic
situations. But both effects involve intervals in time and space, and so we
need to use special relativity to account for their influence on
measurements of relativistic jets.

To investigate these relationships, we need to make use of the Lorentz
transformations for velocity, which are listed in the following box (in the
form in which the primed quantities are known and we wish to calculate
the unprimed velocities). Here we assume the standard configuration of
two inertial reference frames, S (our frame) and S ′, where the latter is the
frame moving with the jet so it’s travelling at a speed of V in the positive
x-direction.

Lorentz transformations for velocity

vx =
v ′
x + V

1 + V v ′
x/c

2
(4.4)

vy =
v ′
y

γ(1 + V v ′
x/c

2)
(4.5)

vz =
v ′
z

γ(1 + V v ′
x/c

2)
(4.6)

If the two frames are defined by relative motion in the x-direction, then
why isn’t vx = V ?

Equations 4.4, 4.5 and 4.6 describe the situation where we want to
measure the velocity of an object that is moving in an arbitrary direction
in frame S, and so vx refers to the x-component of the motion of this
object (which is unrelated to the relative motion of the two frames).

Comparing Equations 4.5 and 4.6 with the Lorentz transformations for the
y- and z-positions (Cosmology Chapter 2) reveals an important difference
that is linked to the idea of aberration. For relative motion in the
x-direction, the y- and z-coordinate positions of an object do not change,
but the components of the object’s velocity in those directions do change.

The components of motion in different directions become intertwined. This
has the important consequence that the net angle of the motion we observe
changes, as Example 4.3 demonstrates.
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Example 4.3

Consider a photon that is emitted by a region of jet that is moving at a
relativistic speed V in our (observer’s) frame of reference S. As shown in
Figure 4.7, the photon travels at an angle θ ′, defined relative to the x ′-axis,
which is in the standard configuration in the direction of the jet’s motion.

Figure 4.7 Diagram of photon travel direction as measured in (a) the jet

frame S ′ and (b) the observer frame S.

Recalling that tan θ = vy/vx (where the velocity components refer to the
photon), use the Lorentz velocity transformations to derive an expression
for tan θ, the angle at which we observe the photon to travel in our frame S.

Solution

We are aiming to derive an expression for tan θ and so we can start by
expressing it in terms of vx and vy:

tan θ =
vy
vx

We can now use the Lorentz transformations for velocity to substitute in
for vx and vy

tan θ =
vy
vx

=
v ′
y

γ(v ′
x + V )

where we have cancelled out the terms (1 + V v ′
x/c

2) from the
denominators of both velocity components.

Since we are considering the velocity of a photon, the magnitude of its
velocity vector is v ′ = c, and so we can write the x- and y-components as
v ′
x = c cos θ ′ and v ′

y = c sin θ ′, and so

tan θ =
1

γ

c sin θ ′

c cos θ ′ + V
=

1

γ

sin θ ′

cos θ ′ + V/c
(4.7)
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We have therefore shown that the observed angle will depend both on the
emitted angle of the photon relative to the jet direction and on the jet
speed (V ). In the next exercise you can examine what this means for
photons emitted by a jet.

Exercise 4.2

Consider a photon emitted by a region of jet material that is travelling at
speeds relative to the Earth of (i) 0.5c, (ii) 0.95c and (iii) 0.99c. In each
case the photon is emitted perpendicular to the jet direction, namely
θ ′ = π/2 radians (or 90◦). For each speed, calculate the angle, θ,
corresponding to the photon’s direction that we observe in our frame of
reference S, observing from the Earth.

The preceding exercise demonstrates that as jet speeds get close to c, the
aberration effect beams any emitted radiation into a very narrow cone of
angles along the direction of motion of the jet. This relativistic beaming
effect is illustrated in Figure 4.8.

Figure 4.8 The effect of relativistic beaming: (a) emission that is isotropic

in the jet frame, S ′, is seen in (b) the observer’s frame, S, to be beamed into a

narrow cone.

Relativistic beaming means that if an observer is located in the direction
of this narrow cone of photons then the observed brightness will be very
high, compared to what would be expected for a stationary object where
the photons travel uniformly (isotropically) in all directions.

Since the angle of the cone of emission is small for speeds that approach c,
tan θ ∼ θ (in units of radians), and the expression for the angle into which
the radiation with θ ′ < π/2 is beamed simplifies to

θ ≈ 1

γ(V/c)
≈ 1

γ
(4.8)

where the final approximation assumes V/c ∼ 1. If you revisit your
answers for Exercise 4.2 you should find that these approximations hold
true for cases (ii) and (iii) where the angles are small and V approaches c.
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4.1.3 Further boosting effects
As well as the beaming effect explained in the previous section, there are
two other, closely related effects that can enhance the observed brightness
of jets depending on their orientation: time dilation and spectral boosting.

Time dilation and photon arrival rate
The brightness of radiation that we measure at the Earth is related to the
number of photons arriving in a given time interval, so luminosity is defined
as the energy carried by the photons per unit time, while flux is the energy
per unit time received per unit area. But the time interval we measure at
the Earth between the arrival of photons is affected both by the ‘raindrop’
effect (the fact that we are effectively travelling towards the photons,
which is equivalent to the traditional Doppler effect), and by time dilation.

The net result is that the time interval between the arrival time at Earth of
two photons emitted with a separation of Δt ′em in the jet frame is given by

Δtrec =
Δt ′em
D (4.9)

where D is known as the relativistic Doppler factor, and is defined as

D =
1

γ[1− (V/c) cos θjet]
(4.10)

where θjet is the angle between the jet’s direction of travel and the line of
sight (see Figure 4.5). Shorter time intervals between photons in the
observer’s frame means measuring a higher flux.

Spectral boosting
The relativistic Doppler factor relates the observed and emitted
frequencies according to

ν = Dν ′ (4.11)

which is analogous to the non-relativistic Doppler effect. The reason that
the frequency is affected is that, if we switch to thinking about the emitted
radiation in its wave description, the argument above about time intervals
also applies to the intervals between wavefronts within a packet of radiated
energy, i.e. the photons we considered previously.

The shifting of frequency can also increase (or occasionally decrease) the
brightness we observe, because it has the effect of changing which intrinsic
frequency (wavelength) of radiation is being measured. You will see later
that the radio emission from jets often has a decreasing power-law
relationship between flux density and frequency so that Fν ∝ ν−α, where
α, representing the slope of a log–log graph of the two quantities, is known
as the spectral index.

These two ways in which time dilation enhances the brightness of a moving
source relative to a stationary one are illustrated in Figure 4.9.
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Figure 4.9 The effects of relativistic Doppler boosting: in the observer’s

frame S, both the flux of radiation (the rate at which photons arrive) and the

frequency of the radiation are increased.

Total of all three relativistic boosting effects

Taking together all three of the effects we have discussed (beaming,
time dilation and spectral boosting) the observed luminosity density
(luminosity per unit frequency), Lν , from a region of jet is related to
the true, intrinsic luminosity density emitted by the jet, L ′

ν , by

Lν = D 3+αL ′
ν (4.12)

Exercise 4.3

The radio jet of the quasar 3C 273 is thought to be oriented with an angle
of 6◦ to the line of sight. A bright jet knot is measured to have a luminosity
density at a particular frequency of 3.7× 1024WHz−1 and α = 0.6, and the
jet material is thought to be travelling at V = 0.85c. What is the intrinsic
luminosity density emitted by the jet in its own frame of reference?

These relativistic beaming effects are very well studied, and the observed
sidedness of radio jets is used to infer both speeds and orientation of the
jets (i.e. θjet), to be able to model how the jets evolve and transfer energy
to their surroundings.

It is important to note that all of these effects occur in other types of
relativistic outflows as well. For example, relativistic jets are observed in
X-ray binary star systems in which a stellar-mass black hole is powered by
accreting material from a neighbour. In Chapter 5 of this book you will
also see how these effects are important in gamma-ray bursts, which are
powerful transient explosions linked to the endpoints of stellar evolution.
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4.2 Matter and radiation in
relativistic outflows

The previous section considered the large-scale motion of matter as it
travels outwards in black-hole jets. As well as affecting the macrophysics
of jets (processes affecting directly observable size scales), special relativity
is also important for understanding the microphysics of how the radio
emission we observe from jets is produced, e.g. how individual particles are
behaving.

It was realised in the mid 1950s that both optical and radio jet emission
must be produced by the mechanism of synchrotron radiation, which
occurs when charged particles spiral around magnetic field lines at
relativistic speeds. Figure 4.10a illustrates the basic process that produces
synchrotron radiation, while Figure 4.10b places the microphysical
radiation process in the context of the large-scale jet flow.

magnetic
field line

Figure 4.10 Two relativistic processes in jets: (a) the spiralling in a magnetic field B of individual charged

particles at speeds close to c produces synchrotron radiation, and (b) the bulk relativistic flow of parcels of

material (containing spiralling particles) along a jet.

In the next section we will explore the synchrotron process in more detail.
As you work through the rest of the module it is very important to keep in
mind the distinctions between jet macrophysics and microphysics. In
particular, because both processes involve relativistic speeds (and
corresponding Lorentz factors), it can be easy to get confused between the
speed of the large-scale bulk motion of the jet fluid and the speeds of the
individually spiralling electrons. In discussions of relativistic outflows we
will always use γ for the Lorentz factor corresponding to the bulk velocity
of jet material, and γe to refer to the typical Lorentz factors of individual
spiralling particles (you will see shortly that the main particles of interest
are electrons and positrons).
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4.2.1 Synchrotron radiation
All of the electromagnetic radiation we measure is produced by the
acceleration of charged particles in some form. In Chapter 3 you
encountered thermal bremsstrahlung, which is caused by interactions
between two charged particles. In the synchrotron process it is the
interaction between particles and a magnetic field that accelerates particles
and causes them to emit radiation.

A charged particle in a magnetic field will follow a spiral path around the
magnetic field lines. The frequency of rotation is known as the
gyrofrequency, which for a non-relativistic particle of mass m is given by

νg =
|q|B
2πm

(4.13)

where B is the magnetic field strength and q is the particle’s charge.

For a relativistic particle, the frequency of the synchrotron radiation
produced by the spiral motion is related to νg. The emitted radiation from
a single spiralling particle peaks at a frequency νsyn, which is given byAlthough Equation 4.14 is

entirely general and applies to
any charged particle, there is a
reason for the inclusion of
subscript ‘e’, which you will see
shortly.

νsyn ≈ γ2eνg =
γ2e |q|B
2πm

(4.14)

where γe is the Lorentz factor of the particle. In the case of non-relativistic
particle speeds (γ = 1) the emission is known as cyclotron radiation.
Figure 4.11 shows the synchrotron spectrum for an individual electron.

Figure 4.11 A log–log graph of flux density versus frequency for synchrotron

radiation from a single electron.

The Lorentz factor of an individual relativistic particle is closely related to
the particle’s energy, as described in the following box.

Relativistic particle energies

The total energy E of a particle of mass m travelling at relativistic
speeds is given by:

E = γemc2 (4.15)
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The frequency at which synchrotron emission is produced depends strongly
on the type of particle. Exercise 4.4 enables you to investigate how
synchrotron radiation differs for electrons and protons.

Exercise 4.4

Calculate the approximate peak frequency of synchrotron radiation
produced by (a) an electron and a proton, each with γ = 1000, and (b) an
electron and a proton, each with a particle energy E = 500MeV. In both
cases assume a magnetic field strength of B = 10−7T.

The exercise shows that for similar Lorentz factors, electron synchrotron
emission is produced at frequencies nearly 2000 times higher than those
coming from a proton (reflecting the ratio of the particle masses). For
similar particle energies, the difference is even more extreme. For typical
magnetic field strengths in astrophysical situations, including in AGN jets,
electron synchrotron emission is produced at GHz radio frequencies,
whereas any proton contribution peaks at very low frequencies, below the
range observable by radio telescopes.

The rate of synchrotron emission also depends strongly on γe and therefore
inversely on particle mass. This means that the contribution of
synchrotron emission from protons is always negligible compared to
electrons. (Positrons, if any are present, will radiate at the same rate as
electrons.) For the remainder of the book we will therefore consider only
electron synchrotron radiation.

The amount of synchrotron radiation produced per unit time is the
synchrotron emissivity, jsyn, which for a single relativistic electron of
energy E = γemc2 is given by its energy loss rate, as follows

jsyn(E) = −
〈
dE

dt

〉
=

4

3
σTγ

2
e c

B2

2µ0
(4.16)

where σT is the Thomson cross-section and µ0 is a constant known as the
permittivity of free space. The rate of energy loss is given in angle brackets
as it is an average loss rate on timescales longer than the gyration of the
electron about the field lines. The synchrotron emissivity determines the
flux we measure from a synchrotron source at the Earth, and so
measurements of radio spectra from synchrotron sources can be used to
test the predictions of synchrotron theory.

In reality we are never observing a single radiating electron, and so we
need to consider the spectrum of a population of electrons, which are likely
to have a range of energies. A typical electron energy distribution has the
form of a power law, so that the number of electrons with energies in the
range E to E + dE is given by:

N(E) dE = N0E
−p dE (4.17)

where N0 is a constant and p is known as the electron energy index.
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The total emissivity in a given frequency range is then given by summing
the spectra of all individual electrons that contribute within that range.
A precise derivation of the synchrotron spectrum involves the integral of
jsyn ×N(E) dE multiplied by a convolution term that describes the shape
of the individual electron’s spectrum (i.e. the distribution in frequency
shown in Figure 4.11). However, the correct shape of the synchrotron radio
spectrum across much of the typically observed frequency range can be
obtained by making the simplifying assumption that an electron of energy
E emits all of its synchrotron emission at the relevant peak frequency, νsyn.

The brightness quantity we measure with radio telescopes on Earth is the
flux density, Fν , measured in units of Wm−2Hz−1. This is equivalent to
the flux measured in a very narrow frequency range, divided by that
frequency range dν. Example 4.4 considers the shape of this measured
synchrotron spectrum.

Example 4.4

Consider a population of electrons that have a power-law distribution of
particle energies, as given by Equation 4.17. Assuming that the observed
flux in a given frequency range is proportional to the total emitted
radiation over that range of frequencies, find an expression for how Fν
depends on ν and the magnetic field strength, B. (Hint : assume the source
is at a redshift close to zero, so there is no difference between the observed
and emitted frequencies.)

Solution

The flux we measure over a narrow frequency range ν to ν + dν is given by
Fν dν and is proportional to the product of the emissivity of electrons
emitting in that range and the number of such electrons:

Fν dν ∝ jsyn(E)N(E) dE

where E is the energy of an electron whose emission peaks at frequency ν.
We will work with proportionalities because the question asks only for the
dependence on ν and B – the constant of proportionality would account
for the distance to the object, i.e. the geometric conversion between
emitted luminosity and flux.

Substituting in our expressions for jsyn and N(E) dE we obtain

Fν dν ∝ 4

3
σTγ

2
e c

B2

2µ0
N0E

−p dE

Since we are working with a proportionality we can neglect the constant
terms (except for B, which is constant, but the question asked us to retain;
it will be relevant later in the chapter), and so if we substitute for γe in
terms of E (Equation 4.15) we obtain

Fν dν ∝ E2B2E−p dE

∝ E2−pB2 dE
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We now need to rewrite this expression as a dependence on emitting
frequency instead of particle energy, so we need expressions for how E and
dE depend on ν and B. We first substitute for γe = E/mc2 in
Equation 4.14 and then rearrange it to obtain

E = mec
2

(
2πmeν

eB

)1/2

and so E ∝ ν1/2B−1/2.

We can now differentiate the preceding expression to obtain a relation
between dE and dν:

dE = mec
2

(
2πme

eB

)1/2 1

2
ν−1/2 dν

so dE ∝ ν−1/2B−1/2 dν. Substituting in the proportionalities for E and dE
into the expression for F (ν) dν gives

Fν dν ∝
(
ν1/2B−1/2

)2−p
B2ν−1/2B−1/2 dν

∝ ν−(p−1)/2B(p+1)/2 dν

Finally, assuming a narrow frequency range we can divide by dν to obtain
the required expression for the flux density, Fν

Fν ∝ ν−(p−1)/2B(p+1)/2 (4.18)

Therefore if the underlying electron population has a power-law spectrum,
then so will the observed synchrotron spectrum. Figure 4.12 illustrates
how the spectra of individual electrons add up to produce an overall
power-law shape across a wide range of frequencies.

Figure 4.12 A sketch of the spectrum of synchrotron radiation from a

population of electrons, obtained by summing the contributions from the

individual electron spectra.
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The spectral index, α, is defined as the observed spectral slope, and so it is
related to the electron energy index via α = (p− 1)/2. In the next section
we will explore why the underlying electron energy distributions typically
have the power-law form given by Equation 4.17.

4.2.2 Particle acceleration and shocks
The conclusion that radio emission from radio galaxies and radio-loud
quasars is produced by the synchrotron process tells us something
important about the physics of jets: they must contain very energetic
particles. In this section we will consider how these energetic particles are
produced.

The basic idea is that particles are accelerated at shocks, which are
discontinuities in the fluid flow caused by a disturbance attempting to
travel at speeds faster than the local sound speed.

If we consider fluid flow in a jet, it is very likely that this is not entirely
smooth – parcels of plasma are likely to be ejected from the central regions
at varying rates, and so catch-up and collision are possible. Figure 4.13a
illustrates a pressure wave (a discontinuity in the gas) travelling through
the jet plasma. If its speed exceeds cs then it becomes a shock. In this
situation, the unshocked gas has no warning of the peak of the disturbance
arriving, which leads to an abrupt discontinuity in the fluid properties on
either side of the shock front, as shown in Figure 4.13b.

Figure 4.13 (a) A propagating pressure disturbance that turns into a shock

because the wavefront gets compressed to form an abrupt jump in pressure;

(b) gas properties differing abruptly on either side of the shock front.

Recalling our discussion of microphysical versus macrophysical processes, if
we now shift back to considering the behaviour of individual particles
instead of larger parcels of gas, it turns out that individual electrons can
travel backwards and forwards across shock fronts because they continue
to follow their spiralling paths around magnetic field lines.
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4.2 Matter and radiation in relativistic outflows

When a particle crosses the shock front then in the particle’s rest frame it
sees the plasma moving towards it, and typically gains energy by
scattering off magnetic field concentrations in (what it sees as) the
approaching flow. Crucially, this is true whichever direction the particle
travels across the front, and so particles can scatter backwards and
forwards, with an average energy increase ΔE per crossing given by〈

ΔE

E

〉
=

4v

3c
(4.19)

where v is the difference in the speed of the fluid on either side of the
shock front. From this equation it can be seen that this process only works
efficiently for high-energy particles (i.e. those whose speeds are already
relativistic).

This process is known as diffusive shock acceleration or (first-order)
Fermi acceleration, and occurs not just in jets but in a wide range of
astrophysical environments. The following study comment shows how the
particle population can evolve to a power-law distribution of energies.

The energy distribution of shock-accelerated particles

Consider a population of Ninit particles in the vicinity of a shock front
that all have the same energy, Einit. We assume that a particle has a
non-zero probability, q, of remaining near the shock front after each
round trip across the shock front and back. We write the energy
increase per round trip as ε = 1 +ΔE/E, where ΔE/E is given by
Equation 4.19.

The number of particles remaining after one round trip will be
N1 = Ninitq. For each successive round trip, the particle number is
again multiplied by q, so that after n round trips there will be
Nn = Ninitq

n particles remaining. The energy of each particle after
one round trip will be E1 = Einitε, and so similarly, after n round
trips, the particles will typically have an energy En = Einitε

n.

We can combine the equations for Nn and En to eliminate n. Taking
the natural log of the equations for Nn and En gives

n =
ln(Nn/Ninit)

ln q
=

ln(En/Einit)

ln ε

Rearranging, this gives

ln (Nn/Ninit)

ln (En/Einit)
=

ln q

ln ε

which can be rearranged further to give

Nn

Ninit
=

(
En

Einit

)ln q/ ln ε

(4.20)
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So far we are considering only the particles that remain circling the
shock front after a certain number of round trips, but when we
observe a source we are interested in the energy distribution of all of
the particles, including those that escape at different times.

At a given point in time, Nn describes the number of particles that
will eventually end up with energies greater than En, because some
will leave before gaining any more energy, while some will continue to
reach higher energies. So Nn can be written as

Nn =

∫ ∞

Einit

N(E) dE ∝ E ln q/ ln ε

where N(E) dE is the number of particles with energies between E
and dE. (We use this expression rather than simply N(E) because it
is more realistic to consider numbers within a narrow energy range,
dE, rather than a single fixed energy E.)

Evaluating the integral gives

N(E) dE ∝ E−p dE

where p = −1 + ln q/ ln ε, which is equivalent to the electron energy
index defined in Equation 4.17. It can be shown that for the expected
conditions at a strong shock, p ∼ 2.

If the particles in radio jets have been shock-accelerated by the process
described in the preceding box, what would you expect to measure as
the typical radio spectral index, α?

If p = 2 then α = (p− 1)/2 = 0.5.

Observations show that many jets and hotspot regions of radio galaxies,
where we expect particles to be accelerated at shocks, indeed show
α ≈ 0.5. The α values for more extended regions of radio emission, such as
the largest-scale plumes and lobes in Figures 4.1 and 4.2, tend to be
steeper as a result of more complicated effects of how particle energies
evolve over long timescales once acceleration stops.

4.3 Energetics and galaxy feedback
In the final section of the chapter we return to broader questions of how
jets are produced, and how they transport energy within and beyond their
host galaxies, as introduced at the end of the previous chapter.
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4.3.1 Powering AGN jets
In order for jets of matter to travel at relativistic speeds for distances of
hundreds of kiloparsecs, a large amount of energy must be channelled into
a narrow outflowing region. This energy supply must remain quite stable
on a timescale of tens of millions of years.

The energy supply and launching of narrow, highly relativistic jets is
tightly connected to the supermassive black holes in galaxy centres. The
favoured mechanism by which jets are launched is the Blandford–Znajek
mechanism, in which a spinning black hole twists magnetic field lines
that produce a channel through which electromagnetic energy is
transported outwards from close to the black hole. Figure 4.14 shows a
diagram of how this mechanism works.

magnetic fieldmagnetic field

magnetic field

Figure 4.14 A schematic illustration of the Blandford–Znajek mechanism for

launching relativistic jets. The diagram shows a side on view of an accretion

disc and spinning black hole, with jets launched in the direction of the

black-hole spin axis (assumed perpendicular to the disc of accreting material).

A crucial requirement is that the black hole is spinning. A spinning black
hole has an ergosphere, a region outside the event horizon where
spacetime is forced to rotate; it is this region that allows the twisted
magnetic field structure to be produced. If the Blandford–Znajek
mechanism is the correct explanation for how jets are produced, then the
spin of the central black hole might determine which AGN become
radio-loud and which do not.
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The second requirement for jets to be launched is that energy is supplied
via accretion, which transports magnetic field inwards to the ergosphere.
A rough estimate of the rate at which energy released by accretion is
available to power a jet can be written as

Qjet = ηjetṁc2 (4.21)

where ṁ is the rate at which mass is accreted and ηjet is the efficiency with
which mass is converted to energy. An efficiency of 1 would correspond to
all of the mass–energy of the accreting material being converted to
available energy.

A similar expression was given in Chapter 1 for the rate of energy release
via radiation, i.e. the AGN luminosity:

LAGN = ηradṁc2 (4.22)

where the efficiency ηrad is likely to be different from ηjet, and they cannot
together sum to more than 1. Typically ηrad is thought to be *1, e.g. ηrad
is usually assumed to be ∼0.1 for bright AGN (although it can be much
lower in some situations).

The following exercise explores the relationship between accretion and the
energy budget of an active galaxy with powerful jets.

Exercise 4.5

An AGN is observed to have jets of power Qjet = 3.5× 1038W as well as
having a bright AGN nucleus. If 40% of the energy released from accretion
onto the central black hole goes into powering the jet, and assuming a
typical radiative efficiency of ηrad = 0.1, estimate the accretion rate of the
black hole in units of M" y−1, and the luminosity of the AGN.

4.3.2 Energy content of radio galaxies
When radio jets were first detected, attempts were made to estimate how
much energy they contain as a first step in understanding how they could
be produced – the required energies turned out to be very large, which is
why jets are thought to have important effects on the evolution of their
galaxy environments.

The total energy density (energy per unit volume, Utot) contained within a
region of synchrotron-emitting plasma, such as the lobes of a radio galaxy,
is the sum of the energy densities of the particles and the magnetic field:

Utot =

∫ Emax

Emin

En(E) dE +
B2

2µ0
+ UNR (4.23)

where the integral term describes the energy from synchrotron-radiating
electrons. We call this integral Ue from now on. The function n(E) is the
number density of electrons of energy E, so is given by N(E) (as defined in
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Equation 4.17) divided by the source volume, V . The second term is the
magnetic field energy density. UNR is the energetic contribution from any
‘non-radiating’ particles that are present but not contributing to the
synchrotron emission, e.g. protons – see Section 4.2.1. The integral limits
Emin and Emax are the minimum and maximum energies of
synchrotron-emitting electrons. The total energy of the radio galaxy is
then Etot = UtotV .

Exercise 4.6

Find an expression for the electron energy density, Ue, in the situation
where n(E) = n0E

−p and (i) p = 2; and (ii) p -= 2.

Although the equation for the total energy density is relatively
straightforward, it is difficult in practice to measure this quantity reliably.
Firstly, an assumption must be made about UNR, because it cannot be
determined from observations (since if protons are present we can’t detect
their radiation). The ratio of non-radiating to radiating particles is
typically represented by κ, in which case Equation 4.23 can be written as

Utot = (1 + κ)

∫ Emax

Emin

En(E) dE +
B2

2µ0
(4.24)

The second difficulty in measuring Utot is that the quantity we can
measure, the synchrotron flux density, depends on both the electron energy
distribution and the magnetic field strength. Equation 4.18 can be
rewritten as

Fν(ν) = Cn0ν
−(p−1)/2B(p+1)/2 (4.25)

where C is a constant and the dependence on n0 (also a constant) is
written out explicitly. This equation tells us that, while the radio spectral
index can be used to determine p, the measured radio flux density at a
particular frequency only tells us a combination of n0 and B, rather than
each quantity separately: a small electron density and high magnetic field
can produce the same amount of emission as a high electron density and
small magnetic field.

However, the following example shows that it is possible to determine a
minimum total energy contained within the plasma, which provides useful
information about the jet power and how it could be generated.

Example 4.5

Show that, for a measured flux density Fν at a frequency ν, there is a
minimum total energy that the plasma could contain, and show that the

magnetic field strength at which this occurs, Bmin ∝ F
2/(p+5)
ν .

(Hint : to simplify the algebra, consider the situation where p -= 2.)
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Solution

The strategy to find a minimum energy must involve finding the conditions
for which the derivative of the total energy with respect to some quantity
is equal to zero. The quantity in question must be B, since we are asked to
find the value of B corresponding to the minimum.

The first step is to write the expression for the total energy in terms of
quantities related to Fν . Expanding out Equation 4.24, as was done in
Exercise 4.6, gives

Utot = (1 + κ)
n0

(2− p)

(
E2−p

max − E2−p
min

)
+

B2

2µ0

We are aiming for an expression that depends on Fν and B, and so we can
rearrange Equation 4.25 for n0.

n0 =
Fν

C
ν(p−1)/2B−(p+1)/2

We can now use this expression to eliminate the unknown n0 from the
equation for Utot:

Utot = (1 + κ)
Fνν

(p−1)/2B−(p+1)/2

C(2− p)

(
E2−p

max − E2−p
min

)
+

B2

2µ0

Although this is a complicated expression, it is relatively straightforward
to differentiate it with respect to B:

dUtot

dB
= (1 + κ)

Fνν
(p−1)/2

C(2− p)

(
E2−p

max − E2−p
min

)−(p+ 1)

2
B−(p+3)/2 +

B

µ0

Setting the derivative to zero and rearranging for B gives

Bmin =

[
µ0(1 + κ)

Fνν
(p−1)/2(p+ 1)

C(4− 2p)

(
E2−p

max − E2−p
min

)]2/(p+5)

(4.26)

and so the magnetic field strength is proportional to F
2/(p+5)
ν , as required.

It can be shown that this minimum energy condition for a synchrotron
plasma corresponds very closely to the condition of having equal energy
densities in the magnetic field and in the particles, which is known as
equipartition, and given by

B2

2µ0
= (1 + κ)

∫ Emax

Emin

En(E) dE (4.27)

where κ is the ratio of non-radiating to radiating particles.

The ability to measure the minimum total energy in radio galaxies is really
useful, because it tells us that the jet power must be sufficient to provide
at least that much energy over the lifetime of the radio source. The jet
must also have had the power to push the surrounding medium out of the
way to expand the radio lobe. A useful quantity is therefore the enthalpy
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of the radio galaxy, H, which is the sum of the internal energy and the
work done to expand to its current size: H ≈ Etot + PextV .

This definition uses the simplifying assumptions that the pressure has
remained the same throughout the expansion of the radio plasma, and that
the lobe expansion has mainly been subsonic. It is likely that in some cases
much of the expansion was supersonic, in which the enthalpy is higher, and
so the energy that must have been supplied to an observed radio galaxy
over its lifetime, ERG(= H), is

ERG ≥ Etot + PextV (4.28)

The following exercise explores a practical example.

Exercise 4.7

A radio galaxy has two lobes, with the overall distribution of radio plasma
supplied by the two jets to the lobes having a roughly cylindrical shape.
The overall length of the source from end to end is 500 kpc, and the lobes
are roughly 30 kpc in radius. The radio galaxy is located in a galaxy
cluster, with a typical ICM pressure of 1.7× 10−13 Pa. Assume that the
radio galaxy is at equipartition, and has a magnetic field strength of
B = 4× 10−9T.

(a) Estimate the total energy contained within the radio lobes.

(b) Estimate the enthalpy of the radio galaxy (ERG) at the time of
observation.

(c) If the radio galaxy has an age of 108 y, what jet power would have
been required to produce the observed radio source (assuming Qjet

has been constant throughout its lifetime)?

The previous exercise shows how radio observations can be used to
estimate the energy available from radio galaxies. These types of
calculation helped establish the presence of a central supermassive black
hole in radio galaxies and quasars, because other potential energy sources
could not provide the necessary power.

As you saw in the previous chapter, understanding the energy being
transported by radio galaxies is also very important for investigating how
gas cools to form stars: jet energy transport has a strong influence on how
massive galaxies evolve, and calculations such as those shown here enable
galaxy feedback models to be tested.

117



Chapter 4 Black-hole jets

4.4 Summary of Chapter 4
• Galaxies possessing large-scale, radio-emitting jets are known as

radio galaxies and radio-loud quasars, which are part of the active
galaxy population.

• Active-galaxy jets are produced in the vicinity of a central supermassive
black hole, and travel at relativistic speeds. Such jets can extend for
distances of over a megaparsec – well beyond the boundary of the host
galaxy.

• If orientation on the sky is not taken into account then apparent jet
speeds can appear to exceed the speed of light, a phenomenon known as
apparent superluminal motion. The measured speed is related to
the true jet speed by

βapp =
β sin θ

1− β cos θ
(Eqn 4.3)

• The relativistic jet speeds mean that measurements of jet properties are
subject to effects of special relativity, including relativistic beaming,
in which isotropically emitted radiation is observed in a narrow cone
around the direction of motion, luminosity and spectral boosting due to
the relativistic Doppler effect.

• At a given observing frequency, the luminosity density, Lν , of a jet
region is boosted relative to the emitted luminosity density at that
frequency, L ′

ν , according to

Lν = D 3+αL ′
ν (Eqn 4.12)

where α is the radio spectral index and D is the relativistic Doppler
factor, given by

D =
1

γ[1− (V/c) cos θjet]
(Eqn 4.10)

where γ is the Lorentz factor, and θjet is the angle between the jet’s
direction of travel and the line of sight.

• The radio emission from the jets and lobes of radio galaxies (as well as
many other astrophysical sources) is produced via the process of
synchrotron radiation, in which relativistic electrons spiral around
magnetic field lines.

• The synchrotron emission from a single relativistic electron peaks at a
frequency νsyn:

νsyn ≈ γ2e |q|B
2πm

(Eqn 4.14)

and the emissivity is given by

jsyn(E) =
4

3
σTγ

2
e c

B2

2µ0
(Eqn 4.16)
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• The electron populations in radio galaxy jets and lobes typically have a
power-law distribution of energies

N(E) dE = N0E
−p dE (Eqn 4.17)

where the electron energy index p is related to the observed spectral
index, α, by α = (p− 1)/2.

• The relativistic particles in radio galaxy jets and lobes have been
accelerated at shocks caused by disturbances propagating at speeds
greater than the local sound speed – this process results in the observed
power-law energy distribution.

• Relativistic jets are thought to be produced by the Blandford–Znajek
mechanism and powered by the accretion of gas onto a supermassive
black hole. The rate at which a jet can be powered can be expressed as

Qjet = ηjetṁc2 (Eqn 4.21)

where ηjet is the efficiency and ṁ is the mass accretion rate.

• The total internal energy of a synchrotron-emitting plasma is given by
the volume of the emitting region multiplied by the energy density, Utot:

Utot = (1 + κ)

∫ Emax

Emin

E n(E) dE +
B2

2µ0
(Eqn 4.24)

where κ is the ratio of non-radiating to radiating particles and n(E) is
the electron number density, whose energy dependence is the same as for
N(E).

• The minimum energy condition or assumption of equipartition of
energy densities between the particles and the magnetic field allows the
internal energy of radio jets and lobes to be estimated.

• The total energy that the jets must have provided over a radio-galaxy’s
lifetime to explain its currently observed properties is given by

ERG ≥ Etot + PextV (Eqn 4.28)
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Chapter 5 Gamma-ray bursts
In In 2018, Swift was renamed the

Neil Gehrels Swift Observatory
in honour of the scientist who
led the project to build and
launch the telescope.

November 2004, a NASA Delta 7320 rocket blasted off from Cape
Canaveral in Florida carrying a new space telescope called the Swift
Gamma-Ray Burst Explorer (or just Swift for short) into low Earth orbit.

Roughly three times per fortnight, the Burst Alert Telescope (BAT) on
board the Swift satellite detects a bright flash of γ-rays arriving from
space. These events are called γ-ray bursts (or GRBs for short). They
produce a flash of γ-rays that only lasts a few seconds, but can be so
bright that it briefly outshines all other γ-ray emission in the sky,
including the Sun!

Our current understanding of GRBs comes from observations and diligent
research spanning more than 50 years. For most of that time there was no
certainty about the celestial origins of GRBs or the physical processes that
produced them. However, the twenty years following the launch of Swift
have seen huge advances in our knowledge of these spectacular phenomena.

In this chapter you will learn about the observed properties of GRBs and
how these properties can be used to infer the astrophysical processes that
produce them. You will see how observations spanning the entire
electromagnetic spectrum are used to build physical models of GRBs as
relativistic outflows, with some similar underlying physics to the jets
studied in Chapter 4, but very different celestial origins.

Objectives
Working through this chapter will enable you to

• describe what is meant by the ‘prompt emission’ from GRBs and
summarise its observational characteristics including properties of γ-ray
light curves and spectra

• name the two different categories of GRB and explain how they are
distinguished by their observational characteristics

• describe what is meant by the ‘afterglow’ of a GRB and summarise the
typical behaviour of GRB afterglow light curves

• explain how the observed characteristics of GRBs can be used to infer
that they must contain highly relativistic outflows

• describe the fireball model of GRB emission and explain how it accounts
for the observed properties of GRBs’ prompt and afterglow emission

• describe the different types of celestial event that are believed to be the
progenitors of different GRB classes and outline the evidence for these
associations.
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5.1 GRB observations: a brief
history

The history of GRB research began on 2 July 1967, at the height of the
Cold War. The first GRB detection was made by two satellites that had
been launched by the United States of America to monitor nuclear
detonations in space around the Earth (or potentially behind the Moon)
that would violate the Nuclear Test Ban Treaty. These satellites, named
Vela 3 and Vela 4, detected a flash of γ-rays that did not resemble any of
the expected signatures of a nuclear explosion. News of the detection did
not reach the scientific community until 1973, but it was soon established
that the fleet of Vela satellites had detected several of these flashes that
seemed to appear at random times and to originate from random
directions on the sky.

The next two decades saw relatively few new GRB observations, and the
sparsity of observational data was a major obstacle to theoretical work to
understand the origins of these mysterious flashes. This hiatus came to an
end in 1991 with the launch of NASA’s Compton Gamma Ray Observatory
(CGRO) which carried a dedicated all-sky γ-ray telescope called the Burst
and Transient Source Explorer (or BATSE for short). Over the next
nine years the CGRO revolutionised the field of GRB research. BATSE
detected an average of one GRB per day and was able to measure the
bursts’ light curves, their spectra, and their locations on the sky.

Even with the wealth of observational data that were collected by BATSE,
several major questions about the nature and origins of GRBs remained
outstanding. The next revolution in our understanding of GRBs came in
1997 when the first, rapidly fading, optical counterpart of a GRB was
detected. It was quickly realised that studying these counterparts would be
crucial to unveil the physical processes that operate in GRBs; you will
learn more about them in Section 5.2.2.

Swift was specifically designed with instruments that could both detect
GRBs and conduct rapid follow-up observations at X-ray, ultraviolet and
optical frequencies. Like its predecessor, the CGRO, Swift dramatically
improved our understanding of GRBs and it continues to operate and
detect new bursts at the time of writing in 2023. You will learn more about
the capabilities of Swift and the instruments it carries in Section 5.2.2.

In 2008, NASA launched the Fermi space telescope. Fermi carries two
γ-ray telescopes called the Gamma-ray Burst Monitor (or GBM for short)
and the Large Area Telescope (or LAT).

Figure 5.1 shows the celestial positions of all the GRBs detected by the
CGRO BATSE, Swift and Fermi (up to 2023).
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5.1 GRB observations: a brief history

Figure 5.1 The spatial distribution of all the GRBs that were observed by

the CGRO BATSE, Fermi GBM and Swift BAT instruments in Galactic

celestial coordinates. The dashed line shows the location of the galactic plane.

Until recently, Fermi held the record for the highest energy γ-ray photon
that had ever been detected coming from a GRB. This record stood at
94 million electronvolts (or about 1.5× 10−11 J) until the ground-based,
MAGIC γ-ray telescopes on the island of La Palma detected several γ-ray
photons with energies above 1 billion electronvolts!∗ The fact that GRBs
emit γ-rays with such enormous energies tells us that extreme physical
processes must be involved.

We will end this section with an observational signature of a GRB that did
not involve photons of any energy. In 2017, the LIGO and Virgo
interferometers that were briefly introduced in Cosmology Chapter 3
detected gravitational waves produced in the seconds before the first
γ-rays from the associated burst were emitted. In Section 5.5.2 you will
learn how these and subsequent detections have allowed scientists to locate
the progenitors of some GRBs and to finally unlock one of the
longest-standing mysteries in astronomy.

∗For context 1 billion electronvolts is roughly equal to the gravitational potential
energy released when a grain of sand falls 1 millimetre at the Earth’s surface. This may
seem small, but remember this is the energy of a single photon and we can describe it in
terms of objects and distances that we can experience physically every day!
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5.2 Observable properties of GRBs
In the years since 1967, astronomers have observed and catalogued the
properties of thousands of GRBs. In this section we will review those
observational properties and you will see that GRBs exhibit a remarkable
diversity of temporal and spectral behaviour.

5.2.1 The prompt-emission phase
At photon energies exceeding 10 keV, the bright γ-ray emission from GRBs
is actually remarkably brief. Even the longest-lasting GRBs only remain
detectable for a few tens of minutes. Astronomers call this transient burst
of γ-rays the prompt-emission phase.

In the next three sections we will discuss the different temporal and
spectral behaviours that are observed in GRBs and how they can be used
to classify individual GRBs. We end our discussion of the prompt-emission
phase with a discussion of the large-scale spatial distribution of GRBs.

Prompt GRB light curves
The observed durations of prompt GRB emission span a very large range,
from a few milliseconds to tens of minutes. The detailed evolution of the
γ-ray emission intensity during the prompt-emission phase (sometimes
called the light curve morphology) also varies markedly between individual
bursts. To illustrate this remarkable diversity of temporal behaviour, the
panels in Figure 5.2 show prompt γ-ray light curves for eight GRBs that
were detected by the Swift BAT instrument. The light curves show a wide
range of durations and shapes, but all exhibit rapid variability on ms
timescales. The gap in the light curve shown in panel (f) represents a short
break in data collection by the BAT.

As these examples show, GRB light curves have complex shapes, with
some having multiple bright emission episodes. These episodes may or may
not be separated by gaps during which no γ-ray emission is detected.
Some GRB light curves exhibit a single episode of continuous γ-ray
emission which makes them appear much simpler. Even then, the rate at
which the γ-ray flux increases and decays varies between bursts making
some light curves appear symmetric, while others look more skewed. One
temporal characteristic that does seem to be similar among all GRBs is
the presence of very rapid variability, and flux variation on timescales as
short as 1 millisecond has been detected from bright GRBs.
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5.2 Observable properties of GRBs

Figure 5.2 Eight prompt γ-ray light curves that were recorded by the Swift

BAT instrument. See the box titled ‘Comparing GRB durations’ for an

explanation of how the T90 value above each light curve is derived.
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The rapid variability of GRBs means that it could be misleading to
measure their brightness at any particular instant in time. Instead, the
brightness of individual GRBs is normally specified in terms a
time-integrated quantity called the fluence.

Fluence

The fluence S of a celestial object is defined as the observed flux F
integrated over time

S =

∫ t2

t1

F (t) dt (5.1)

Sometimes you will see notation that defines the fluence for a range of
frequencies. For example S15–150 keV denotes the observed fluence of
photons with energies between 15 and 150 keV. Fluence has SI units
of Jm−2.

Observed GRB fluences vary widely from burst to burst. For example, the
Swift BAT instrument measured values for S15–150 keV spanning four orders
of magnitude between 10−11 and 10−7 Jm−2.

Comparing GRB durations

Instead of comparing the total durations of GRBs, astronomers will
often measure the time interval during which a certain percentage of
the total fluence was observed. The most commonly compared
interval is denoted T90, where the subscript 90 indicates that this is
the duration within which 90% of the total fluence was observed. You
may also see shorter intervals, like T50, which represents the time
interval over which half the fluence was observed.

Prompt GRB spectra
The prompt emission from GRBs spans a wide range of photon energies,
with observed spectra extending from ∼10 keV to as much as ∼1TeV in
some extreme cases! As an example, Figure 5.3 shows the prompt spectral
energy distribution for GRB 180720B, which is one of the brightest bursts
detected by the Fermi LAT.
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5.2 Observable properties of GRBs

Figure 5.3 The prompt spectral energy distribution for GRB 180720B,

which has νp ≈ 0.8MeV. The coloured points show the measurements made

by instruments on board the Swift and Fermi satellites. The black line shows

the best fit for a smoothly broken power-law model and the grey band gives

its associated uncertainty.

Even though GRB 180720B was particularly bright at GeV energies
compared to other GRBs, the overall shape of its spectrum is very typical.
The prompt spectra of almost all GRBs can be roughly modelled using a
broken power-law function

Nν dν ∝


(

ν

νp

)α

dν if ν ≤ νp(
ν

νp

)β

dν if ν > νp

(5.2)

where νp is the break frequency at which the index changes from α to β,
hence the name ‘broken power-law function’. The function Nν represents
the number of γ-rays observed with frequencies between ν and ν + dν, per
unit area, per unit time. To convert Nν to the flux density Fν at a
particular frequency ν, simply multiply by that frequency:

Fν(ν) = νNν(ν) (5.3)
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Example 5.1

Consider the high-energy (ν > νp) segment of the GRB spectral energy
distribution shown in Figure 5.3.

(a) Using the figure, estimate the slope of the segment as it is plotted,
i.e. on logarithmic axes.

(b) Using your answer from part (a), calculate an approximate value for
the spectral index β that is used in Equation 5.2.

Solution

(a) To solve this part we will estimate the gradient of the best-fitting
model line. We start by picking two points and estimating their x
(or E) and y (or νFν) values. To keep things as simple as possible, we
will pick the points that have log(νFν) = −10 and log(νFν) = −11.
The corresponding log(E) values for these points are approximately
log(E) ≈ 0.8 and log(E) ≈ 3.3, respectively. The gradient βlog of the
line between these two points, in logarithmic space, is then:

βlog ≈ −10− (−11)

0.8− 3.3
≈ −0.4

(b) Equation 5.2 describes the prompt GRB spectrum in units of Nν

versus ν. Equation 5.3 tells us how to convert from Fν to Nν and
rearranging gives

Nν =
Fν

ν

Multiplying the numerator and the denominator by ν, we obtain the
conversion between Nν and νFν

Nν =
νFν

ν2

Rewriting Equation 5.2 for ν > νp in terms of νFν we find:

νFν ∝ ν2
(

ν

νp

)β

∝ ν−β
p νβ+2

Comparing this expression with the result of part (a) we can infer
that:

β + 2 ≈ −0.4

and so β ≈ −2.4.

Typical parameters of prompt GRB spectra
The best-fitting values of parameters, νp, α and β vary from burst to
burst. The distribution of the break energy εp = hνp is centred around
150 keV but it spans a wide range between about 10 keV and 200MeV.
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The α and β distributions are centred around α ≈ −1 and β ≈ −2.2, but
there is quite a large scatter in both index values from burst to burst.

It is important to keep in mind that the broken power-law is not a
physically motivated model. Rather, it is just a easy-to use function that
approximates the spectral shapes of most observed prompt GRB spectra.
However, later in this chapter you will learn how the values of the
parameters α, β and νp can be used to infer what physical processes are
operating to generate the γ-ray emission in GRBs.

Classification of GRBs
The catalogues collected by CGRO, Swift and Fermi contain measured
properties for thousands of GRBs. By analysing these catalogues,
astronomers have found that GRBs can be divided into two distinct
categories based primarily on their durations.

Figure 5.4 shows the distributions of T90 for GRBs that were observed by
CGRO BATSE, Swift BAT and Fermi GBM. All three distributions show
a large population of GRBs with durations longer than 2 seconds: these
are referred to as long GRBs. As well as the long GRB peak, all three
distributions in Figure 5.4 also reveal a smaller population with durations
shorter than 2 seconds: these are called short GRBs.

Figure 5.4 The distribution of burst durations (T90), showing contributions

for bursts detected by CGRO BATSE (yellow), Swift BAT (pink) and Fermi

GBM (blue). The combined distribution is bimodal (i.e. it has two distinct

peaks), showing two populations of bursts with typical durations that are

either longer or shorter than 2 seconds. The peak for short GRBs is much less

pronounced than the long GRB peak.

The distributions shown in Figure 5.4 show that astronomers have
detected many more long GRBs than short GRBs. Figure 5.5 shows that
short GRBs tend to appear fainter than long GRBs.

129



Chapter 5 Gamma-ray bursts

Figure 5.5 Distribution of prompt γ-ray fluences for GRBs observed by the

Swift BAT instrument. The purple region shows the overlap between the

distributions for long and short GRBs.

The populations of long and short GRBs are also observed to have
different spectral properties. Although there is some overlap between the
two GRB classes, a typical short GRB is likely to emit more of its flux as
high-energy photons than a typical long GRB.

Later in the chapter you will see how observable differences between these
two types of burst can be used to identify different populations of celestial
objects that could be their progenitors.

Spatial distribution of GRBs
Figure 5.1 shows the locations of all GRBs observed by CGRO BATSE,
Swift BAT and Fermi GBM. For all three instruments, the observed
distribution of GRBs on the sky is isotropic, with no clustering of events in
any direction. The distribution of GRB fluences is also highly isotropic
with bursts of all brightnesses equally likely to appear in all directions.

Now let’s consider the distribution of GRB distances. In 1997,
GRB 970228 became the first GRB to have a reliably measured
cosmological redshift; we will discuss this further in Section 5.2.2. Since
then astronomers have measured the redshifts of hundreds of GRBs and
have firmly established that they occur outside the Milky Way, in distant
galaxies. Figure 5.6 shows the distribution of redshifts for 388 GRBs that
were detected by the Swift space telescope. The most distant GRB in this
sample is GRB 090423, which has a measured redshift of z = 8.2.
GRB 090423 was observed in 2009 but its γ-rays were emitted when the
Universe was just 617 million years old. Note that the short GRBs
detected by Swift are fewer in number than the long GRBs at any redshift
and the distribution of short GRBs is skewed towards much lower redshifts.
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Figure 5.6 The distribution of redshifts (z) for 388 GRBs that were detected

by the Swift space telescope.

Swift measured S15−150 keV for GRB 090423 to be 5.9× 10−10 Jm−2, which
is actually relatively faint compared to the majority of bursts.
Nonetheless, if its emission was isotropic its distance means that the total
energy output of its prompt γ-ray emission could still have been as high as
3.2× 1044 J. The fact that GRBs appear so bright in γ-rays, even though
they occur at cosmological distances, confirms that they must be among
the most energetic events in the Universe.

5.2.2 The GRB afterglow
The prompt γ-ray emission that we discussed in the last section is very
conspicuous, which makes it relatively easy to detect GRBs when they
happen. However, the prompt emission fades quickly and this makes it
technically very challenging to search for and localise the celestial objects
that produce the γ-rays. Historically, the task was made even harder,
because many γ-ray telescopes had relatively coarse angular resolution.
For example, the CGRO BATSE instrument could only detect γ-ray
sources with a positional accuracy of about 4 degrees.

Fortunately, we now know that the brief, prompt emission from most GRBs
is followed by a longer period of much fainter emission at lower frequencies.
This lower-frequency emission is called the GRB afterglow and its
extended duration gives astronomers the time they need to accurately
determine GRB positions.

Figure 5.7 The optical

afterglow of GRB 970228

superimposed on its host

galaxy. The redshift of the

host was later determined to

be z = 0.695.Figure 5.7 shows the first GRB afterglow that
was ever detected. It is the afterglow of GRB 970228, which was imaged in
visible light by the William Herschel Telescope on the island of La Palma.
The afterglow coincided with the outskirts of a distant galaxy at redshift
z = 0.695, which allowed astronomers to finally establish that GRBs were
extragalactic phenomena that were happening at cosmological distances.
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One of the main design goals of the Swift mission was the efficient
detection of GRB afterglows. Almost all GRBs are followed by an X-ray
afterglow, so the Swift satellite carries an X-ray telescope, called the XRT.
When the BAT detects a GRB, Swift is designed to quickly reorient itself
to point the XRT in the direction of the burst and start observing the
afterglow. Roughly half of GRBs also exhibit a visible (optical) afterglow,
so Swift also carries a telescope called UVOT that is sensitive to optical
and ultraviolet photons.

X-ray afterglows
Figure 5.8 shows four typical X-ray afterglow light curves that were
measured by the Swift XRT together with corresponding prompt emission
measured by the Swift BAT. The afterglow light curves are typically much
less chaotic than those you saw for the prompt emission in Figure 5.2, and
they can normally be well modelled as a series of distinct segments forming
a multiply-broken power law.

Figure 5.8 Four examples of GRB light curves that were measured by instruments on board the Swift

satellite. The light curves show both the prompt emission measured by the BAT (blue) and the X-ray afterglow

measured by the XRT (orange).
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Within each segment, the flux Fν(t) usually decreases over time following a
power-law trend. Using the symbol κ to represent the power-law index
within a particular segment, we can write

Fν(t) ∝ t−κ

where κ is a small positive number, but not in general an integer.

Analysis of early observations led astronomers to form a ‘canonical’ model
for the X-ray light curve of GRB afterglows, with four distinct phases:

(a) The first phase is often called the steep decay phase because it is
characterised by a rapid drop in flux over time. During this phase the
prompt emission fades rapidly and the afterglow starts to dominate
the X-ray flux. Observed values of the index κ during the steep decay
phase span a range 1 ! κ ! 4.

(b) The second phase is often referred to as the plateau. During the
plateau phase the index κ ∼ 1. The observed flux decreases much
more slowly over time and can even start to increase slightly.

(c) The third phase is called the normal decay phase. In this phase, the
flux begins to fall more steeply again but with observed values of κ
that are smaller than they were in the steep decay phase.

(d) The final phase in this canonical model is called the post jet-break
phase. We will discuss the reasons for this name later in the chapter.
In this phase, the rate of flux decay steepens again with κ taking
values between those of the steep decay and normal decay phases.

Many afterglow light curves also include short flares, when the flux
increases rapidly for a short time before returning to its original power-law
decay trajectory.

Thanks to hundreds of afterglow observations by the Swift XRT,
astronomers now know that fewer than half of all GRBs exhibit all four
canonical phases. Nonetheless, the canonical model remains useful for
describing different behaviours we may observe as afterglows evolve and
fade over time. Later in this chapter we will use it to help understand the
processes that produce the afterglow emission; this will also give us clues
about what could be driving and powering the prompt emission.

Look again at the GRB afterglow light curves in Figure 5.8 and try to
identify which, if any, of the canonical phases each one exhibits.

Deciding whether a light curve exhibits a particular phase can be
somewhat subjective so your answer may not exactly match those below.

(a) Evidence of the steep decay phase is shown by GRB 090618
(between 100 s and 300 s after trigger) and GRB 140419A (between
70 s and 100 s after trigger).

(b) Evidence of the plateau phase is shown by GRB 090618 (between
300 s and 1200 s after trigger) and possibly by GRB 130907A
(around 100 s after trigger).

(c) All four light curves seem to show a normal decay phase.

(d) None of the light curves shows strong evidence for an obvious post
jet-break phase.
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The X-ray spectra during the afterglow are also well modelled by
power-law functions. Observations by the Swift XRT have shown that once
the prompt emission has faded, the afterglow spectral index remains quite
stable throughout all canonical phases for most individual bursts. As a
population, the majority of bursts have afterglow spectral indices in the
range between 0.5 and 1.5.

Optical afterglows and achromatic breaks
Roughly half of the GRBs detected by Swift also emit optical afterglows
that can accompany their X-ray counterparts but often outlast them.
Indeed, optical afterglows can persist for several months after the prompt
γ-ray emission has faded.

Figure 5.9 shows the optical and ultraviolet afterglow light curves of
GRB 090618 that were observed in six different wavelength bands by the
Swift UVOT instrument. Just like the X-ray afterglows, these optical light
curves can be modelled using broken power laws. An interesting feature of
these plots is that they all change index by roughly the same amount, at
roughly the same time. Astronomers use the term achromatic to describe
breaks like this, which exhibit the same behaviour across a wide range of
photon frequencies. Not all GRB afterglow light curves exhibit achromatic
breaks: later in this chapter you will see that they can be interpreted as a
geometric effect that depends on the observer’s viewing angle rather than
some intrinsic change in the photon production mechanism.

Figure 5.9 An achromatic break in the optical and ultraviolet afterglow light

curves of GRB 090618 measured using the Swift UVOT. Each light curve was

measured through a different optical or ultraviolet filter. All six exhibit a

power-law break around 104 s after the prompt burst trigger.

134



5.3 From observations towards models

5.2.3 GRB hosts and nurseries
The large number of optical and X-ray afterglows that have been detected
by Swift and other telescopes has allowed astronomers to determine the
properties of many GRBs’ host galaxies and the locations of the GRBs
within them. This has revealed a clear difference between the populations
of galaxies that host long versus short GRBs. Long GRBs tend to be
found within the bright star-forming regions (nurseries) of irregular or
disturbed spiral galaxies. Long GRB hosts also tend to contain stars and
interstellar media with low metallicities. Conversely, short GRBs are found
in galaxies of all types, with no particular prevalence within star-forming
regions. In Section 5.5 you will see that these differences between the
environments where long and short GRBs occur can provide clues about
the celestial objects that produce them.

5.3 From observations towards
models

In this section we will examine how the observable properties you learned
about in Section 5.2 can be used to infer a set of physical properties that
must be realised by any plausible GRB progenitor candidates. In
Section 5.5 we will use these physical properties as selection criteria to
identify populations of celestial objects that could be the sources of GRBs.

5.3.1 Evidence for relativistic expansion
In this section we will examine several aspects of the observational
evidence that you saw in Section 5.2. From these we can infer that:

(a) The physical processes that generate the prompt GRB emission must
occur within a very compact region of space.

(b) The number density of γ-ray photons in these regions must be
extremely large.

(c) The γ-ray-emitting material must be expanding ultra-relativistically.

Compactness
Example 5.2 shows how the variability of the prompt-emission light curves
of GRBs can be used to infer an upper limit on the sizes of GRB
progenitors. Remarkably, this limit turns out to be much smaller than the
radius of a typical star like our Sun!

Example 5.2

Figure 5.2 shows that the prompt emission from GRBs can vary by large
factors on millisecond (ms) timescales.

(a) Use this information to estimate an upper bound on the size of the
region producing the prompt γ-rays.

(b) Compare this size estimate to the solar radius, R" ≈ 7× 105 km.
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Solution

(a) We start by assuming that large changes in the observed flux must
reflect changing physical properties across all or most of the
γ-ray-emitting region.

Even if the physical changes causing variations in γ-ray emission
happen instantaneously throughout the emitting region, the observed
flux must vary more slowly because γ-rays emitted from different
parts of the region must travel different distances to reach us. The
different light travel times smooth out the observed flux variability.
This means that the minimum observed variability timescale
corresponds roughly with the typical time taken for light to propagate
across the γ-ray-emitting region.

If we use Δtmin to denote the minimum observed variability timescale
and l to denote the size of the γ-ray-emitting region along the line of
sight, then we can write:

Δtmin " l

c

Rearranging this equation and using Δtmin ≈ 10−3 s we find that

l ! Δtminc (5.4)

! 10−3 s× 3× 108ms−1

! 3× 105m

(b) We have estimated that the region producing the prompt GRB
photons is around 300 km in size, which is roughly 0.05% of the solar
radius!

The result of Example 5.2 tells us that the prompt emission from GRBs
must be produced within remarkably compact regions of space. Next, let’s
consider what our observations imply about the physical conditions within
those regions, starting with an estimate of the γ-ray photon number
density.

Photon number density
Before we can estimate the number density of γ-ray photons within the
region that produces the prompt GRB emission, we must first estimate the
typical γ-ray luminosities of long and short GRBs. The typical 15–150 keV
fluence of a long GRB is S15–150 keV ∼ 10−8 Jm−2 and Figure 5.4 shows the
typical duration of a long GRB is T90 ∼ 80 s. For a typical long GRB with
redshift z ∼ 2, and assuming that GRBs emit isotropically, this implies a
long GRB luminosity L15–150 keV ∼ 4× 1042W, which is about 1016 times
more luminous than the Sun!

The following exercise asks you to calculate a luminosity estimate for short
GRBs. You should find that they are even brighter.
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Exercise 5.1

Assuming that short GRBs emit isotropically, use the values for their
typical fluence and duration shown in Figures 5.5 and 5.4 to estimate the
15–150 keV luminosity of their prompt emission in watts. You may assume
that the typical observed redshift for short GRBs, shown in Figure 5.6,
equates to a luminosity distance dL ∼ 6200Mpc.

We can use our GRB luminosity estimates to calculate the number density
of photons within the prompt γ-ray emission region.

Assuming a spherical emitting region, the flux of γ-ray photons escaping
through a small area element on the surface of the emitting region, ΔA, is
given by F = ΔE/(ΔtΔA), where ΔE is the energy of the photons that
pass through ΔA in a time interval Δt. The flux is therefore given by

F =
εγnγ ΔV

ΔtΔA
(5.5)

where nγ is the photon number density in the emitting region, and εγ is the
typical photon energy. The photons propagate at the speed of light, and so

ΔV = cΔtΔA

Therefore the flux can be expressed as

F = cnγεγ (5.6)

Assuming that the GRBs emit isotropically, we can also write F in terms
of the GRB γ-ray luminosity L and the surface area of the emission region
of radius R:

F =
L

4πR2

By combining these two expressions for F and rearranging we can derive
an expression for nγ in terms of L.

nγ =
L

4πR2cεγ
(5.7)

The following example uses all of the results that we have derived so far in
this section to estimate some numerical values for nγ in GRBs.

Example 5.3

Figure 5.3 shows that prompt GRB spectra are dominated by γ-ray
photons with energies ∼500 keV; the observed variability of GRB light
curves tells us that those photons are generated within regions that are at
most a few hundred kilometres in size. Use this information to calculate an
order-of-magnitude estimate for the γ-ray photon number density within
the emission region of a GRB with luminosity Lγ = 1044W. Give your
answer in SI units.
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Solution

To solve this problem we can use Equation 5.7. However, the question asks
for an answer in SI units so we must first convert the γ-ray energy from
keV to joules. The conversion factor between electronvolts and joules is
just the electron charge e = 1.602× 10−19C. This means that

500 keV = 500× 1000× 1.602× 10−19 J = 8.01× 10−14 J

Now we just need to evaluate Equation 5.7. We only need to calculate an
order-of-magnitude estimate, so will assume that all the γ-rays have
εγ = 10−13 J and that the average radius of the prompt-emission region is
R = 105m. Using these values

nγ =
Lγ

4πR2cεγ
=

1044W

4π × (105m)2 × 3× 108ms−1 × 10−13 J

= 2.7× 1037m−3 ≈ 1037m−3

Using the approach demonstrated in Example 5.3, it is found that that
typical GRB luminosities in the range ∼1042–1044W imply values of nγ in
the range nγ ∼ 1035–1037m−3. In the next section you will see that these
huge photon number densities provide very strong evidence for relativistic
expansion in GRBs.

The compactness problem
If their energies are high enough, γ-ray photons that collide with each
other undergo electron–positron pair production (see Cosmology
Chapter 8). For this to happen, the energies of the two photons must be at
least equal to the combined rest mass 2me of the electron and positron, in
a frame of reference in which their combined momentum is zero.†

Equation 5.8 expresses this criterion

ε1ε2 " (mec
2)2 (5.8)

We saw in Section 5.2.1 that the observed spectra of GRBs exhibit
significant fluxes of photons with energies well above the rest-mass energy
of the electron. This means the vast majority of photon pairs that collide
within the prompt-emission region will have enough energy to produce an
electron–positron pair.

The e∓ pair production cross-section

If two γ-ray photons with sufficient energy interact, they are not
guaranteed to annihilate and produce an e∓ pair. The probability
that they do annihilate is quantified by the e∓ pair production
cross-section, which we will denote σγ γ throughout this chapter.

†You may see this frame referred to as the centre-of-momentum frame.
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The exact value of σγ γ depends on the product of the interacting
photons’ energies ε1ε2 and the angle between their trajectories θγ γ .
However, it is often sufficient to consider an average value and use the
approximation σγ γ ≈ σT/4, where σT is the Thomson cross-section.

The probability that a γ-ray will escape from the prompt-emission region of
a GRB without being annihilated can be described in terms of a quantity
called the optical depth, which we will denote τγ γ . For the e∓ pair
production process, τγ γ can be written approximately in terms of the γ-ray
number density nγ , the cross-section for the pair production process σγ γ
and the distance Δl that a typical γ-ray must travel to escape the prompt
emission. To derive rough estimates for τγ γ in GRBs, we can assume that
Δl approximately equals the size of the emission region R and write:

τγ γ ≈ σγ γnγ Δl ∼ σγ γnγ R (5.9)

The probability that a photon escapes a region with optical depth τγ γ
without being annihilated is e−τγ γ . Using the values of R ∼ 100 km and
nγ ∼ 1037m−3 that we estimated earlier in the chapter, and assuming
σγ γ ≈ σT/4, we calculate τγ γ ∼ 1013–1014. Such an enormous optical
depth means that it is almost inevitable that all γ-rays in the
prompt-emission region will undergo pair production before they escape,
which introduces an apparent contradiction.

We have shown that almost all the γ-rays produced within the
prompt-emission region (and particularly those with energies greater than
∼0.5MeV) should undergo pair production and be converted into electrons
and positrons before they escape – we should never observe them.
However, we do observe γ-rays with energies much larger than 0.5MeV in
the spectra of GRBs: TeV photons have been observed from some of them!
This contradiction is called the compactness problem and for many years it
was used to argue that GRBs could not be very luminous and therefore
could not be at cosmological distances.

The effect of relativistic expansion
Ultimately, it was realised that the compactness problem can be resolved if
the γ-ray-emitting material in the GRB prompt-emission region moves
relativistically. To see why, we will first consider the effects of bulk
relativistic motion on the observed properties of GRB photons. Properly
accounting for those effects will help to explain how the γ-rays we detect
avoid annihilation and escape the prompt-emission region of the GRB.

We will consider a scenario in which the prompt-emission region and the
material that it contains is moving towards us with a bulk Lorentz factor
γ $ 1. Unless stated otherwise, the symbol γ throughout this chapter
refers to the bulk Lorentz factor of a region containing γ-ray-emitting
material. We will also use the symbols S and S′ to represent the observer’s
rest frame and the rest frame of the prompt emission, respectively
(analogous to our consideration of relativistic speeds in Chapter 4).
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Accounting for relativistic blueshifting

Highly relativistic motion means that any prompt photons we detect from
the GRB will have been strongly blueshifted.

If we observe a prompt γ-ray from our GRB with energy εγ in S, what
energy would we measure for the same photon in S′?

The relativistic Doppler shift formula (Equation 4.11) tells us that we
would measure an energy ε′γ = D−1εγ (since εγ = hν).

For γ > 1, the energy of the γ-rays in S′ is less than the energy we observe.

If we do not account for relativistic effects, then we overestimate the
number of γ-rays in the prompt-emission region that have enough energy
to undergo electron–positron pair production, and therefore we
overestimate the optical depth to pair production and how difficult it is for
photons to escape.

Let’s estimate the factor by which we overestimate the number of photon
pairs that can undergo e∓ pair production when we ignore relativistic
effects. To do this, we will first find an expression for the number of
photons produced during the burst (i.e. within the variability timescale
Δt) that exceed an arbitrary energy threshold, εγ,t. We will then use this
expression to derive the number of γ-rays emitted by the GRB that have
enough energy to undergo pair production if they interact with a photon
that has energy εγ ≥ εt. We will find that this number depends on the
bulk Lorentz factor of the γ-ray-emitting region and the observed
spectrum of the γ-ray emission.

Based on what you learned in Section 5.2.1 it makes sense to model the
photon flux Nε(εγ) dεγ emitted in a time window of Δt for εγ > εγ,tNε(εγ) dεγ represents the

number of γ-ray photons with
observed energies between εγ
and εγ + dεγ , per unit area, per
unit time.

as a
falling power-law function. Using fγ to represent a constant normalisation
term and χ to represent a power-law index, we can write:

Nε(εγ) dεγ = fγε
−χ
γ dεγ (5.10)

To find the flux of γ-rays with observed energies above εt we integrate
Equation 5.10 with respect to photon energy:

Nε(εγ > εγ,t) =

∫ ∞

εγ,t

N(εγ) dεγ =

∫ ∞

εγ,t

fγε
−χ
γ dεγ

= fγ

[
ε1−χ
γ

1− χ

]∞

εγ,t

= fγ
ε1−χ
γ,t

χ− 1
(5.11)

Now, if dL is the luminosity distance to the GRB, then the total number of
photons with observed energies above εγ,t that a GRB emits during the
time interval Δt is:

N(εγ > εγ,t) = 4πd2LΔtfγ
ε1−χ
γ,t

χ− 1
(5.12)
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We want to compare this with the number of γ-rays that would have
energies ε′γ > εγ,t measured in the rest frame of the prompt-emission
region, S′. Note that by comparing numbers of photons during the burst,
we do not need to transform the time interval between frames, because the
total number of photons emitted is invariant.

If we assume that γ $ 1, then the relativistic Doppler shift formula
(Equation 4.11) can be approximated as ε′γ ≈ εγ/2γ and therefore:

N(ε′γ > εγ,t) = N(εγ/2γ > εγ,t) = N(εγ > 2γεγ,t)

= 4πd2LΔtfγ
(2γεγ,t)

1−χ

χ− 1

∝ γ1−χN(εγ > εγ,t) ∝ 1

γχ−1
N(εγ > εγ,t) (5.13)

Equation 5.13 tells us N(ε′γ > εγ,t) ∝ γ1−χ and that we would overestimate
the number of photons that can undergo e∓ pair production by a factor
γχ−1 if we ignore relativistic effects.

For pair production to occur, two photons need to independently exceed a
threshold energy, such that their combined energy satisfies Equation 5.8.
For example, consider the population of photons with prompt-emission
region rest-frame energies ε′γ,1 " εγ,t. There are a factor γχ−1 fewer of
these photons available in S′ than we would infer from the observed
spectrum without accounting for the relativistic blueshift.

Now, each of the photons that do have energies ε′γ,1 exceeding εγ,t can only
undergo pair production if they encounter another photon with energy
ε′γ,2 " 2(mec

2)2ε−1
γ,t and the number of photons that fulfil this criterion is

also a factor γχ−1 smaller than we would infer without taking blueshifting
into account. Overall, the total number of pairs that can undergo pair
production is reduced by two factors of γχ−1, resulting in a total reduction
by a factor of approximately

(
γχ−1

)2
= γ2χ−2.

Accounting for timescales in the relativistic outflow

As well as making us overestimate the number of photon pairs that can
undergo pair production, the relativistic speed of the outflow also means
that we underestimate the size of the prompt-emission region.

Consider an observer who detects two photons that arrive from a region
that is moving towards them with a highly relativistic speed, such that the
region’s bulk Lorentz factor γ $ 1. This situation has some similarities
with the superluminal motion discussion in Chapter 4 of this book, where
the second photon has less distance to travel than the first, because of the
movement of the emitting region towards us in the intervening time.

In fact, it can be shown that

Δtobs ≈ Δtem
2γ2

(5.14)

This can be seen by noting that the factor relating the time intervals in
Example 4.2 is equivalent to γD, and then using the approximation for D
introduced in the previous section.
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The timescales of processes in the observer’s frame therefore appear
shorter by a factor ∼γ2 if they occur in regions that are moving towards
the observer at relativistic speeds. Consequently, if we want to use the
observed minimum variability timescale Δtmin to estimate the size of the
prompt-emission region, the correct expression is not R ∼ cΔtmin, but
rather:

R ∼ γ2cΔtmin (5.15)

In other words, the prompt-emission region is a factor ∼γ2 larger than we
would estimate if we ignore the effects of relativistic motion of the emitting
region towards the observer during the time interval considered.

Resolving the compactness problem

To see how accounting for relativistic bulk motion can resolve the GRB
compactness problem, let’s derive a rough expression that describes how
the e∓ pair production optical depth τγ γ varies as a function γ.

Earlier, we showed that the number of γ-ray pairs in the prompt-emission
region that can undergo e∓ pair production is proportional to γ2−2χ. This
means that for any randomly chosen γ-ray the number density of γ-rays in
the prompt-emission region with which it can undergo pair production also
changes by a factor of γ2−2χ. The number density nγ is also inversely
proportional to the volume of the prompt-emission region. Assuming that
the volume is roughly proportional to R3 using Equation 5.15, we can say:

nγ ∝ γ2−2χ

R3
∝ γ2−2χγ−6

As we did when deriving Equation 5.9, we can assume that the distance
that γ-rays propagate before they escape the prompt-emission region is
roughly R and so using Equation 5.9, we can write:

τγ γ ∝ nγR ∝ γ2−2χγ−6γ2 ∝ γ2−2χγ−4 ∝ γ−2χ−2

This result tells us that if we set γ ≈ 1 and ignore the effects of relativistic
motion we would overestimate the optical depth in the prompt-emission
region by a factor ∝ γ2χ+2.

Our derivation has made several approximations and assumptions related
to aspects of our model like the observed γ-ray spectrum and the geometry
of the prompt-emission region. Different assumptions would yield slightly
different relationships between τ and γ. However, it would always be the
case that accounting for bulk relativistic motion of the prompt-emission
region implied much lower optical depths for e∓ pair production.
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For a typical GRB with an observed minimum variability timescale
∼10−3 s, an observed γ-ray luminosity ∼1044W and a high-energy spectral
index χ ∼ 2, τγ γ falls below 1 and the compactness problem is avoided if
γ " 100. For context, this value is ten times larger than the bulk Lorentz
factors that have been inferred for AGN jets! Based on our solution to the
compactness problem, we have found that GRBs must produce the most
highly relativistic outflows in the Universe!

Exercise 5.2

Consider a GRB with an observed minimum variability timescale
Δtmin ≈ 1ms. Assume that the prompt-emission region of the GRB is
moving towards us with a bulk Lorentz factor γ ∼ 100.

(a) Estimate the size of the prompt-emission region R, in kilometres,
accounting properly for its relativistic motion.

(b) Compare this estimated size with the radius of the Sun.

5.4 The fireball model
In the previous section we used observed prompt spectra and light curves
to infer that GRBs must generate huge γ-ray luminosities ∼1044W, on
short timescales and within compact regions of space. We also showed that
GRBs must generate γ-ray-emitting material that moves relativistically
with spectacular bulk Lorentz factors γ ∼ 100.

In this section we will introduce a model called the fireball model that
can reproduce these physical properties, and can also explain how the
GRB emission evolves from the prompt-emission phase and into the
afterglow. The fireball model makes no assumptions about the sources of
matter and energy in GRBs. Instead, all of the processes that are
described by the fireball model are assumed to be driven by a hidden
energy source that is usually referred to as the central engine of the
GRB. In Section 5.5 we will consider two families of celestial objects that
are considered to be plausible central engine candidates.

Figure 5.10 illustrates how the observed behaviours of GRBs are explained
as arising from different stages in the evolution of the fireball model. We
will now examine each of these stages in more detail. We start in the next
section by considering the first stage of the fireball model, which predicts
rapid initial expansion at highly relativistic speeds.
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Figure 5.10 Schematic illustration of the fireball model for GRB emission. The diagram shows how different

radiative processes happen at different distances from the exploding central engine.

5.4.1 Relativistic expansion
The initial conditions of the fireball model assume that a very large
amount of energy E0 is imparted instantaneously to matter with mass M0

such that E0 $ M0c
2 within a compact region of space that has a radius

R0. The result is a dense mixture of high-energy γ-ray photons and an
ionised plasma containing electrons and positrons as well as baryonic
particles. At this stage, the rate of Thomson and Compton scattering
interactions between photons and electrons is so high that the fireball is
effectively opaque, the γ-rays are trapped and the resultant radiation
pressure is enormous.

The fireball remains effectively opaque to γ-ray photons as long as the rate
of Compton scattering within it remains high. This opacity results in a
very high γ-ray radiation pressure that must drive a fast expansion into
the surrounding space.

We will model the expanding fireball as a spherical shell that has an inner
radius R and an outer radius R+ΔR. As the fireball expands, its internal
energy is converted into bulk radial motion of the baryons and electrons it
contains. If we assume that the expansion is adiabatic, so that no energy
enters or leaves the fireball, and that radiation pressure drives the
expansion, then it can be shown that the shell’s bulk Lorentz factor grows
in proportion with its inner radius R until it reaches a maximum value
γmax. Writing γ mathematically as a function of R:

γ(R) ∝ R (5.16)

Our assumption of adiabatic expansion means that we can estimate the
maximum Lorentz factor that the fireball shell attains. To simplify our
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derivation, let’s also assume that the electrons and baryons in the fireball
are initially at rest, with bulk Lorentz factor γ0 = 1. This means that the
total energy of the fireball when R = R0, at the moment it starts
expanding, is just

Einit = M0c
2 + E0

where M0 is the total mass contained in the fireball shell and E0 is the
contribution of energy from the central engine, whatever it is. Note that
we make no assumptions yet about what type of celestial object the central
engine might be.

When the fireball attains its maximum Lorentz factor, the electrons and
baryons are still present but all of the energy represented by E0 has been
converted into bulk kinetic energy. This means that we can use Einstein’s
formula for the total energy to write

Efinal = γmaxM0c
2

Now we recall that the expansion is adiabatic so we can just equate our
expressions for Einit and Efinal and rearrange to find γmax:

Efinal = Einit

=⇒ γmaxM0c
2 = M0c

2 + E0

Dividing through by M0c
2 gives

γmax =
M0c

2 + E0

M0c2

= 1 +
E0

M0c2
≈ E0

M0c2
(5.17)

Now let’s derive an expression for the inner radius of the shell when it
reaches its maximum velocity. This radius is often called the saturation
radius and we will denote it using the symbol RS. Using Equation 5.16
and our assumption that the shell starts from rest, we can write:

γmax

γ0
=

RS

R0

This implies that

RS = R0γmax

= R0

(
1 +

E0

M0c2

)
≈ R0

E0

M0c2
(5.18)

Exercise 5.3

Consider a GRB fireball that expands from an initial radius R0 = R" and
achieves a maximum bulk Lorentz factor γmax = 200.

(a) Calculate the saturation radius for this GRB.

(b) If the initial energy of the fireball E0 = 1044 J, estimate the mass M0

of its matter content in solar mass units.
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Radiation pressure can only accelerate the electrons and baryons in the
fireball while it remains opaque to γ-ray photons.‡ The photons accelerate
electrons and positrons by repeated Compton scattering; the electrons
accelerate the baryons via electrostatic Coulomb interactions. However,
the fireball must eventually become transparent to γ-rays or we would
never observe the prompt GRB emission. In the next section we will
describe the fireball model’s predictions for how, when and where this
transition to transparency occurs.

5.4.2 Transparency and baryon loading
From a theoretical perspective, the γ-ray spectrum that is predicted by the
fireball model depends quite sensitively on when the expanding fireball
plasma becomes transparent. In the model, the fireball starts expanding
from a hot dense initial state, and repeated scattering interactions during
the expansion phase are expected to leave the γ-ray photons with a
black-body spectrum. However, you saw in Section 5.2.1 that the prompt
spectra of GRBs are power-law functions of photon energy, which are
highly non-thermal, i.e. far removed from the spectrum of a black body.

To resolve this apparent contradiction, we must assume that the γ-rays we
observe are not the same ones that drove the initial expansion and
therefore we deduce that those earlier γ-rays have transferred all of their
energy into bulk motion of electrons and baryons. This implies that for the
GRBs we observe, the fireball remains opaque until after it has attained its
maximum velocity and only becomes transparent when its inner radius is
larger than RS. In Section 5.4.3 we will discuss how the bulk kinetic
energy of the electrons and baryons is converted back into γ-rays to
produce the prompt-emission spectrum that we observe.

The overall mass of the fireball (M0) is dominated by the baryons in the
plasma, which are thousands of times heavier than the electrons and
positrons. For this reason, M0 is often referred to as the baryon load of
the fireball. However, the opacity of the fireball depends primarily on the
number density of electrons it contains. When this density falls below a
critical threshold, the fireball becomes transparent and the γ-rays can
escape. The electron density is directly related to M0 because the numbers
of electrons, positrons and baryons in the fireball plasma are roughly
equal. Therefore, we can use arguments based on opacity to constrain the
range of M0 values that are possible. If M0 was too small (!10−7M")
then the opacity would fall too quickly as the fireball expands and the
density decreases. The fireball would become transparent before its inner
radius reaches RS and we would observe a thermal GRB spectrum.
Conversely, if M0 is too large ("5× 10−5M") then the fireball would not
have enough energy to attain an ultra-relativistic bulk Lorentz factor, the

‡In the very early stages of the fireball expansion, its opacity is provided by electrons
and positrons produced by the pair production process you learned about in Section 5.3.1.
However, these pairs annihilate quickly to leave the opacity dominated by electrons that
were present in the initial fireball plasma.
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compactness problem would not be circumvented, and e∓ pair production
would eliminate all γ-rays with energies "0.5MeV. The combined
constraints limit M0 quite specifically to be a small fraction of a solar
mass. We can use this narrow range of values in conjunction with
Equation 5.17 to derive additional constraints on the bulk Lorentz factors
that are reached in GRBs.

Exercise 5.4

Consider the example of GRB 090423, which we estimated in Section 5.2.1
to have a total energy output E0 ∼ 1044 J. Using limits on M0 derived
above, estimate the corresponding range of possible maximum bulk
Lorentz factors γmax that could have been reached in GRB 090423.

5.4.3 Generating the prompt γ-ray emission
In the previous section we argued that the expanding fireball shell must
remain opaque until all of the energy in photons has been used to
accelerate the baryon load of the fireball to ultra-relativistic speeds.

When the fireball becomes transparent it is expanding ultra-relativistically,
but in the rest frame of the expanding shell the baryons and electrons have
approximately black-body energy distributions and their velocities are at
most mildly relativistic. The radiation produced by these particles would
exhibit a black-body spectrum, which does not match the observed
power-law spectra of prompt GRB emission.

In this section we will revisit two physical mechanisms that you learned
about in Chapter 4. The fireball model invokes these mechanisms to:

(a) Transfer the bulk kinetic energy of baryons into random kinetic
energy of electrons in the expanding shell rest frame and leave them
with a power-law distribution of ultra-relativistic energies.

(b) Convert this random electron motion into high-energy γ-rays, thereby
producing the prompt GRB emission that we ultimately observe.

Internal shocks
In Chapter 4 you learned how charged particles can obtain a power-law
distribution of energies via diffusive shock acceleration as they scatter
repeatedly across shock fronts in the jets and radio lobes of AGNs. The
fireball model invokes diffusive shock acceleration as a mechanism for
converting the bulk kinetic energy of the baryons in the fireball into
random high-speed motion of electrons and positrons in the plasma.

To generate the shocks, the fireball model assumes that the thick
expanding shell is really a collection of thin shells that are launched at
slightly different times and have slightly different expansion speeds. In this
scenario, shocks occur when faster shells that were launched later catch up
with and overtake slower ones that were launched earlier. These shocks are
often referred to as internal shocks because they result from interactions
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between different components of the fireball, rather than interactions
between the fireball and an external medium.

The innermost radius of the fireball when the thin shells begin to overtake
one another and the internal shocks are formed is called the dissipation
radius, denoted by Rdis. A good approximation for Rdis can be expressed
in terms of the fireball’s maximum Lorentz factor γmax and the observed
variability timescale Δt

Rdis ≈ 2γ2maxcΔt (5.19)

The following example shows how this result can be used to estimate a
numerical value for Rdis for a typical GRB bulk Lorentz factor and
variability timescale.

Example 5.4

Consider a GRB that ejects thin spherical shells at times that are, on
average, separated by an interval Δt = 10ms. The shells have a small
range of ultra-relativistic, but slightly different, speeds.

(a) If the average shell speed vave = 0.9999c, estimate the corresponding
average shell Lorentz factor, γave.

(b) Hence, estimate the radius Rdis at which the faster shells would start
to catch the slower ones and internal shocks could form. Write your
answer in kilometres.

Solution

(a) To solve this part, we just use the formula for the Lorentz factor:

γave =

(
1− v2ave

c2

)−1/2

=
(
1− 0.99992

)−1/2

≈ 70.71

(b) Now, using Equation 5.19:

Rdis ≈ 2γ2avecΔt

≈ 2× (70.71)2 × 3× 108ms−1 × 10−2 s

≈ 3× 107 km

γ-rays from synchrotron radiation
Acceleration by internal shocks leaves electrons in the fireball with a
negative-index power-law distribution of Lorentz factors. Using the symbol
p > 0 to represent the power-law index, we can express the number of
electrons with Lorentz factors between γe and γe + dγe as:

N(γe) dγe ∝ γ−p
e dγe (5.20)

Note that γe refers to the Lorentz factors of individual electrons and not to
the bulk Lorentz factor of the prompt-emission region, as in Chapter 4.
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The fireball is likely to be magnetised because any turbulence in its
expanding material will lead to motion of charged particles and consequent
magnetic field generation. If there are any magnetic fields present, then
any relativistic electrons that are present will be accelerated into spiral
trajectories and emit synchrotron radiation. If the ambient magnetic fields
are strong enough and the accelerated electrons are energetic enough then
the synchrotron spectrum can extend to γ-ray energies and produce the
observed prompt GRB emission.

5.4.4 Generating the afterglow emission
In this section we will consider the phases in the fireball evolution that are
responsible for generating the GRB afterglow. Throughout the fireball’s
expansion it has been sweeping up material from the surrounding space.
This material might be leftover remnants or debris from the celestial event
that produced the GRB or it may just be material from the ambient
interstellar medium. After the fireball has reached its maximum speed at
RS, this continual accumulation of extra mass causes the fireball expansion
to decelerate.§ This deceleration drives a powerful relativistic shock called
a forward shock into the fireball’s surroundings, which delivers the
energy that produces the afterglow emission. The afterglow photons are
generated by the same mechanisms that produced the prompt γ-ray
emission. The forward shock extracts the fireball’s bulk kinetic energy and
transfers it to electrons in the fireball, which accelerate to relativistic
speeds and emit synchrotron radiation at γ-ray wavelengths.

During the prompt-emission phase, the deceleration is relatively mild and
the emission from the forward shock is negligible compared to that
produced by the internal shocks within the fireball. This situation changes
once the mass Mext of the swept-up external material reaches an
approximate threshold such that:

Mext "
M0

γmax
(5.21)

At this point the emission from the forward shock becomes comparable to
that from the prompt emission, which is now rapidly fading.

The radius Rdec at which the inequality in Equation 5.21 is satisfied is
called the deceleration radius, Rdec. We can estimate Rdec if we assume
a specific composition and radial density profile for the material being
swept up. Let’s consider a very simple case in which the ambient medium
is pure hydrogen and has a constant density of n atoms per cubic metre. If
we assume that the initial size of the fireball R0 is negligible compared to
Rdec, then we can approximate the volume of material Vdec that the fireball
has swept up once it has expanded to the deceleration radius. This is just

Vdec =
4πR3

dec

3
§Any material swept up before the fireball reaches RS has negligible effect on its rate

of expansion, so the expressions derived in Section 5.4.1 are valid.
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We can write the swept-up mass that was contained within Vdec as

Mext = ρVdec = mp n
4πR3

dec

3

where ρ is the ambient medium density. Now we substitute this expression
into Equation 5.21 and rearrange to find that

Rdec =

(
3M0

4πγmaxmpn

)1/3

≈
(

3E0

4πγ2maxmpnc2

)1/3

(5.22)

where we have used Equation 5.17 to replace M0 with E0. If γmax $ 1
then its average expansion speed is approximately c and the fireball
reaches the deceleration radius in a time

tdec ≈ Rdec

c

However, Equation 5.14 tells us that that an observer who sees the fireball
expanding relativistically towards them with a bulk Lorentz factor ∼γmax

will measure a shorter interval

tdec,obs ≈ Rdec

2γ2maxc
(5.23)

Exercise 5.5

Consider a GRB fireball that starts expanding with an initial energy
E0 = 1044 J into an interstellar medium containing one atom of hydrogen
per cubic centimetre. Estimate the deceleration timescale tdec,obs that
would be measured by a distant observer who sees the fireball expanding
with a maximum Lorentz factor γmax = 200.

To observers witnessing a typical GRB from Earth, the fireball appears to
reach its deceleration radius within a few seconds, which means that
afterglow emission may start to arrive before the prompt emission has
faded completely. This is consistent with the observed light curves shown
in Figure 5.8, which show how the prompt emission observed by the Swift
BAT instrument joins smoothly with the X-ray afterglow observed by the
Swift XRT.

Spectral evolution and the normal decay phase
After passing Rdec the fireball continues to sweep up ambient material and
the forward shock continues to grow. The fireball’s rapidly increasing mass
and ongoing radiative losses slow its expansion and γ decreases at an
increasing rate.

As the forward shock slows down, the magnetic field strength and the
typical electron energy in its vicinity are expected to decrease, which
affects the spectrum of the ongoing synchrotron emission. As the
synchrotron spectrum evolves, the standard theoretical expectation is that
the observed γ-ray, X-ray and optical fluxes should all decay as power-law
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functions of time, which is broadly consistent with the behaviour of
observed GRB afterglows.

Refreshed shocks and the plateau phase
The expectation that flux should decrease following a decaying power-law
trend matches the light-curve evolution that is observed during the normal
decay phase of a GRB afterglow. However, it does not explain the constant
or even rising X-ray fluxes that are observed during the plateau phase. To
produce a flat light curve, some mechanism is needed that can maintain
the forward shock velocity and replenish the energy of the electrons in its
vicinity. The most popular explanation for how this happens is called the
refreshed shock model ; it is related to the internal shock model for prompt
GRB emission that you learned about in Section 5.4.3.

Recall that the internal shock model assumes a fireball containing multiple
different regions or shells that are expanding with slightly different Lorentz
factors. In the refreshed shock model, these different shells arrive at the
forward shock separately with different time delays and so deposit their
combined energy over an extended period of time. Detailed modelling has
shown that this mechanism can explain the plateau in a GRB afterglow
light curve. The plateau phase ends when the innermost expanding shell
reaches the forward shock region and the flux begins to fall as the light
curve enters the normal decay phase.

Achromatic breaks and the post jet-break phase
In Section 5.2.2 you saw that some GRB afterglow light curves exhibit
achromatic breaks that are characterised by abrupt changes in the rates at
which their fluxes decay. These abrupt changes occur simultaneously across
a wide range of frequencies. If they are observed, these breaks typically
occur between the normal decay phase and the post jet-break phase. In
this section we will see that achromatic breaks and the flux evolution
during the post jet-break phase both provide observational evidence that
GRB fireballs are not spherical and GRB emission is not isotropic.

Before we discuss the evidence that supports it, we should consider how a
non-spherical geometry would modify any of the expressions that we have
derived in this chapter. In particular, we will consider a jet geometry in
which the fireball forms a biconical outflow, like the one shown in
Figure 5.11.

Figure 5.11 Schematic illustration of GRB with a biconical jet geometry.

The mathematical symbols are discussed in the text.
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If the opening angle of each conical jet is ΘJ, then the GRB energy is
channelled into a solid angle

ΔΩ = 4π [1− cos(ΘJ/2)] < 4π

In the following discussion, we assume that ΘJ is expressed in radians and
therefore that ΔΩ has units of steradians. Note that ΔΩ is always less than
the solid angle subtended by the surface of a sphere, which is equal to 4π.
Detailed modelling that is beyond the scope of this module predicts that as
long as γ $ 1 and ΘJ > 2/γ, the material flowing along the jets behaves
exactly as it would in a relativistically expanding sphere. Therefore, the
most immediate consequence of such a geometry is that the energy output
we should infer based on the observed luminosity is greatly reduced.

Now, if we use the symbol Eiso to denote the energy we would infer from
the observed GRB luminosity if we assume isotropic emission, then the
true energy output E0 can be written as:

E0 =
ΔΩ

4π
Eiso = [1− cos(ΘJ/2)]Eiso

If the jet opening angle is small, such that ΘJ * 1, then we can use the
Taylor series expansion cosx ≈ 1− x2/2 to write:

E0

Eiso
= [1− cos(ΘJ/2)] ≈

[
1− (

1−Θ2
J/8

)] ≈ Θ2
J

8
(5.24)

Exercise 5.6

In Section 5.2.1 you learned that the assumption of isotropic γ-ray
emission implies total GRB energy outputs Eiso ∼ 1044 J.

(a) Using this value, calculate a new estimate for the energy output of a
typical GRB assuming that its γ-ray emission is not isotropic, but
confined within biconical jets with opening angle ΘJ = 6◦.

(b) By assuming isotropic γ-ray emission, so that E0 = Eiso, a GRB’s
saturation and deceleration radii have been estimated to be
RS,iso = 1.4× 1011m and Rdec,iso = 1.6× 1016m, respectively.
Assuming that the GRB is expanding into an ambient medium
consisting of pure hydrogen that has a constant density of atoms per
cubic metre, calculate new estimates for RS and Rdec assuming the jet
geometry specified in part (a).

To explain the observation of achromatic breaks in GRB afterglow light
curves, we will consider the combined effect of relativistic beaming and a
biconical jet geometry. Figure 5.12 shows how afterglow emission from
points within the jet is concentrated into narrow cones orientated in the
direction of the expanding fireball’s bulk relativistic motion. Outside of
these cones the γ-ray emission is heavily suppressed, so distant observers
would not be able to detect it.
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Figure 5.12 Geometrical interpretation of the jet break. In the top panel,

the jet bulk Lorentz factor γ > 2/ΘJ and distant observers only see a small

part of the jet surface area. In the bottom panel, γ = 2/ΘJ and the observers

see the whole jet.

As the jet slows down, the opening angles of the beaming cones get wider.
The achromatic break is observed at the point in time when γ ∼ 2/ΘJ.
Figure 5.12 shows that once γ ≤ 2/ΘJ then the whole jet is visible to the
observer. During this phase, any observed decrease in the afterglow
brightness represents changes in the physical properties of the forward
shock as it slows down.

At earlier times, when γ > 2/ΘJ, the distant observers can only detect
bright emission from a small, but growing, part of the jet’s overall
cross-section. During this phase, the observed flux decreases more slowly
because the physically driven drop in intrinsic brightness is partially
compensated for by the simultaneous increase in visible luminous area.

When achromatic breaks are observed, the time that they occur can be
used together with models for the evolution of γ to estimate the jet opening
angle ΘJ. For the population of GRBs that have observed achromatic
breaks, typical values of ΘJ range between 1 and 10 degrees, with brighter
bursts like GRB 090618 tending to have narrower, more collimated jets.
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5.5 Unveiling the GRB central
engines

In the previous section you learned that the observed properties of GRBs
can be explained in terms of synchrotron emission from collimated
ultra-relativistic jets that are aligned close to the observer’s line of sight
and driven by a hidden central engine. In this section we will finally
discuss the celestial progenitor objects that are thought to power these jets
and you will see how recent astrophysical observations have helped to
confirm long-standing theories about the origins of GRBs.

In Section 5.2.1 you saw that GRBs can be classified into two categories
based primarily on their duration. The observed properties of long and
short GRBs are sufficiently different that astronomers quickly proposed
that they originate from two different types of progenitor. The theory that
long and short GRBs represent physically distinct populations is reinforced
by the fact that they are found in markedly different astrophysical
environments.

In Section 5.2.3 you learned that long GRBs tend to occur in sites of active
star formation, particularly those within irregular metal-poor galaxies. In
this respect, the observed locations of long GRBs are similar to those of
Type II supernovae. A Type II supernova happens when the core of a
massive star undergoes catastrophic gravitational collapse to form a
neutron star or black hole. Such a collapse releases very large amounts of
energy. In fact, the total energy released by a typical Type II supernova is
only slightly less than is required to power a typical GRB, once the effects
of biconical jet geometry are accounted for. It seems reasonable to assume
that long GRBs represent an extreme manifestation of the physical
processes that produce Type II supernovae; we will discuss this further in
Section 5.5.1.

Unlike their long GRB counterparts, short GRB afterglows have been
observed throughout many different types of galaxies, which makes their
spatial distribution much more like the Type Ia supernovae that you
learned about in Cosmology Chapter 5. Each Type Ia supernova is the
result of a long-lasting interaction between a compact white dwarf (WD)
and another star. There is now substantial observational evidence that
short GRBs result from the interaction and eventual coalescence of two
compact objects. We will discuss this evidence, and the candidate
progenitors for short GRBs that it implies, in Section 5.5.2.
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5.5.1 Long GRBs and hypernovae
When the most massive stars exhaust their fuel for nuclear fusion, their
cores can undergo catastrophic collapse. For stars with masses exceeding
about 25M", the end state of this collapse is thought to be a stellar-mass
black hole. The gravitational collapse releases more than 1046 J of
potential energy and although a large fraction of this energy is lost in an
intense burst of neutrinos, what remains is still enough to power a typical
Type II supernova. The central engines of long GRBs are believed to be
more extreme analogues of core-collapse supernovae called hypernovae.

In Type II supernovae, around 1044 J of energy couples to about 1M" of
matter. This unbinds the whole stellar envelope and drives a
quasi-spherical explosion that expands into the surrounding space at
speeds ∼104 km s−1. In a hypernova, a similar amount of energy is
imparted to at most ∼10−5M" of matter‖ which we have established must
form a highly collimated, ultra-relativistic jet.

In Chapter 4 you learned how the jets of AGNs may be powered by a
spinning black hole twisting magnetic field lines that are generated by a
surrounding accretion flow. A similar mechanism may drive the jets in
hypernovae, but in this case the accretion disk and a surrounding torus
that feeds it must both form inside the envelope of the collapsing star. To
maintain a stable accretion flow in such an extreme environment the
angular momentum of the inflowing material must be very high, which
implies that the collapsing star must be rotating quite rapidly when its
fuel runs out.

Wolf–Rayet stars are both massive and rapidly rotating, which led them to
be considered as plausible hypernova progenitors. However, Wolf–Rayet
stars often produce powerful equatorial winds that can carry away angular
momentum and thus slow their rotation substantially before they run out
of fuel. This would inhibit the maintenance of an internal accretion flow so
it may be that other types of massive stars are the real sources of long
GRBs. The angular momentum of these stars could be increased towards
the ends of their lives via tidal interaction with a binary companion.

Even if a stable accretion flow forms within a collapsing star, it is not
immediately clear whether any jet that is formed can bore a channel
through the surviving stellar atmosphere while maintaining an
ultra-relativistic speed that would allow distant observers to detect the jet
emission as a GRB. To address this uncertainty astronomers run detailed
computer simulations that model the formation of the jet and its
interaction with its surroundings.

‖In Section 5.4.2 you saw that transparency arguments constrain the baryon load of
GRBs to be at between ∼10−7 M" and ∼5× 10−5 M".
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Results from one such simulation are illustrated in Figure 5.13 and show
that the jet can form a turbulent cocoon surrounding an ultra-relativistic
core with β ≡ v/c ≈ 1 that escapes the stellar cocoon.

Figure 5.13 A slice through a three-dimensional simulation of a hypernova

jet breaking through the atmosphere of its parent star. (a) The log-density of

material in the jet and the stellar envelope. (b) The velocity of the jet

material in units of the speed of light.
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Even with the wealth of observational data provided by satellites like
Swift, Fermi and the Hubble Space Telescope (HST ), and detailed
theoretical models run using powerful supercomputers, the precise origins
of long GRBs remains somewhat mysterious. However, in the next section
you will learn how groundbreaking discoveries made since 2016 have
all-but-confirmed the previously hidden nature of short GRBs.

5.5.2 Short GRBs and compact binaries
The lives of stars with masses above ∼9M" typically end in core-collapse
supernovae that leave behind a massive and extremely dense stellar
remnant. If the stellar mass exceeds ∼20M", then this remnant is likely
to be a black hole (BH); otherwise, it will be a neutron star (NS).
Occasionally, two of these compact remnants form in a binary system; it
is these compact binaries that are now known to be the progenitors of
short GRBs.

As you learned in Cosmology Chapter 3, moving masses can generate
gravitational waves. In a compact binary, these waves carry energy away
from the system; as a result, its orbital separation decreases over time until
eventually the two remnants collide and coalesce. The events before and
after this coalescence are illustrated schematically in Figure 5.14.

If one or both of the remnants is a neutron star, then they can be
disrupted by tidal interactions as they approach their binary companion.
Some of the material that is tidally stripped from the neutron stars’
surfaces forms a debris torus in the plane of the binary orbit. When the
two remnants finally merge, the result is a rapidly rotating black hole.

Subsequent accretion of material from the debris torus onto the black hole
is expected to launch an ultra-relativistic jet and power the short GRB
emission. The compact binary merger model implies that both long and
short GRBs are powered by accretion onto a newly formed, stellar-mass
black hole. What differs are the overall mass of material that is accreted
and the environment in which that accretion occurs.
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Figure 5.14 Possible GRB progenitors. Short GRBs result from the merger

of two compact objects in a binary system. Long GRBs result from the

collapse of a massive rotating star at the end of its life. The acronym WD

stands for ‘white dwarf’.

Remarkably, after several decades of uncertainty about the origins of short
GRBs, there is now very strong observational evidence that the compact
binary merger model is correct. On 17 August 2017, the Advanced LIGO
(hereafter shortened to LIGO) and Virgo gravitational wave
interferometers detected the gravitational waves that had been emitted in
the final few seconds before the merger of a compact binary containing two
neutron stars. The distinctive signal that LIGO detected is illustrated in
the bottom panel of Figure 5.15. The intensity of the gravitational wave
emission, and therefore also the rate of orbital decay, increased as the two
neutron stars approach each other. At the same time, the frequency of the
gravitational waves increased as the orbital period of the binary decreased.
The signal stopped abruptly at the instant the two remnants merged.
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Figure 5.15 The first observational evidence that short GRBs are powered

by merging compact binary systems. The top three panels show the γ-ray

light curves observed by the Fermi GBM and the SPI-ACS instrument aboard

the INTEGRAL X-ray telescope. The bottom panel shows the signal recorded

by the LIGO gravitational wave interferometer. As the two neutron stars in

the compact binary spiral closer together, the strength of the gravitational

wave signal increases along with its frequency. The gravitational wave signal

ends abruptly when the two neutron stars collide and coalesce. The prompt

emission from the GRB begins 1.74 seconds later.
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Just 1.74 seconds later, the Fermi GBM detected the short GRB signal
illustrated in the top two panels of Figure 5.15. The burst was also
detected by the INTEGRAL satellite, which provided an independent
verification of the γ-ray signal; the corresponding light curve is shown in
the third panel of Figure 5.15. The temporal coincidence between all three
signals is obvious but crucially, LIGO Fermi and INTEGRAL also agreed
about the direction on the sky that those signals arrived from. The
gravitational wave signal was assigned the identifier GW 170817 and the
near-simultaneous GRB was named GRB 170817A.

Like its predecessor, the CGRO BATSE, the Fermi GBM has coarse
spatial resolution and the same is true of the LIGO interferometer.
Unfortunately, the Swift satellite was not able to point towards the GRB
location until around 15 hours after the initial γ-ray detection. The first
optical detection was made 11 hours later by the Swope Telescope at Las
Campanas Observatory in Chile: it located a fading optical afterglow in
the outskirts of a galaxy called NGC 4993, which is about 40Mpc from
Earth. The initial Swope Telescope detection was quickly confirmed by
70 other ground- and space-based telescopes, spanning frequencies from the
γ-ray to radio bands. As an example, Figure 5.16 shows HST observations
starting about 1 day after the initial burst that monitored the fading
ultraviolet, optical and near-infrared afterglow over 6 subsequent days.

Figure 5.16 HST images showing the fading optical afterglow following the

detection of GRB 170817A by the Fermi GBM.

The enormous multi-wavelength observing campaign that followed the
detection of GW 170817 has provided very strong evidence that at least
some short GRBs can be the result of merging neutron stars in a compact
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binary system.¶ As well as the GRB emission, the violence of the merger
event itself is believed to produce a rapidly expanding and quasi-spherical
explosion called a kilonova, which is responsible for some of the observed
afterglow emission. Spectroscopic observations identified up to 10M⊕ of
heavy elements like gold and platinum among the kilonova ejecta from
GRB 170817A and it is possible that kilonovae are one of the main sources
of these elements in the Universe.

Now that we know compact binary mergers are responsible for at least
some of the observed short GRBs, we can explain some of the
observational properties that distinguish them from long GRBs. Let’s start
with their prompt spectra. In Section 5.2.1 you saw that short GRBs
typically emit a larger proportion of high-energy photons than long GRBs.
This could be explained by the fact that the jets of long GRBs form within
the envelopes of their parent stars and so they can accumulate a large
baryon load as they tunnel out of the stellar atmospheres. For example,
massive stars tend to emit strong stellar winds throughout their lives and
especially as their fuel starts to run out. This can substantially increase
the density of the interstellar medium (ISM) surrounding the star and the
jet may sweep up more baryons even after it escapes the stellar envelope.

In contrast, the debris surrounding the newly formed black hole following a
compact binary merger is likely to be more diffuse than a stellar
atmosphere or the ISM surrounding a massive star, so the baryon load of
short GRB jets may be much lower. Equation 5.17 tells us that a fireball
or jet with a larger baryon load will reach a lower maximum Lorentz factor
than one with a lower baryon load, for the same initial energy input. If the
jets of long GRBs have a larger baryon load than those of short GRBs,
then their jets will tend to be less relativistic. A lower value of γmax

implies that the observed γ-ray spectrum will be less strongly Doppler
blueshifted and so long GRBs will appear to emit proportionally fewer
high-energy γ-rays, on average, as is observed.

The difference between the observed rates and distances to long and short
GRBs can also be explained in terms of their different progenitors. Once a
compact binary forms, it can take several billion years for its orbit to
decay. The compact binary that produced GW 170817 was estimated to
have formed about 7 billion years before its two neutron stars finally
merged. This very long time lag between the formation of a compact
binary system and the eventual GRB may explain the distribution of short
GRB redshifts plotted in Figure 5.6, which shows that short GRBs are
found predominantly in nearby galaxies. Light from more distant galaxies
was emitted when the age of the Universe was smaller than the combined
time taken for the first compact binary systems to form and their
subsequent orbital decay, so we should not expect those galaxies to host
short GRBs. In contrast, long GRBs likely happen when short-lived

¶Note that the possibility remains that only a subset of short GRBs result from
compact binary mergers and other as-yet-unknown progenitors are responsible for the
rest.
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massive stars end their lives. This means that long GRBs may have been
happening since the earliest stars formed, lived and then died. Accordingly,
we would expect to observe long GRBs at much larger distances and
Figure 5.6 confirms that this is indeed the case. Figure 5.5 shows that we
observe many more long GRBs than short GRBs. This difference arises
from a combination of two effects. Firstly, the theoretical rate of
occurrence of long GRBs is expected to be intrinsically higher than that of
short GRBs. Secondly, we observe long GRBs out to larger distances, so
we are probing a much larger volume of the Universe when counting them.
Therefore, even if the occurrence rates of long and short GRBs were
similar, we would still expect to observe many more long GRBs.

5.6 Summary of Chapter 5
• GRBs are extremely powerful cosmic explosions with inferred γ-ray

luminosities in the range 1042–1044W.

• The emission from GRBs is divided into two phases called the
prompt-emission phase and the afterglow.

• The duration of the prompt-emission phase varies widely between
bursts. The shortest GRBs have prompt emission lasting less than a
second, while the longest can persist for a few tens of minutes.

• The observed duration of the prompt emission is used to divide GRBs
into two populations. Those with durations longer than 2 seconds are
called long GRBs and those with durations shorter than 2 seconds are
called short GRBs.

• During the prompt-emission phase the γ-ray emission from GRBs can
briefly outshine all other γ-ray sources in the sky and often varies on
millisecond timescales.

• The fact that GRB prompt-emission light curves vary on such short
timescales is evidence that the γ-ray emission comes from a very small
region of space.

• The spectrum of GRB prompt emission is well modelled by a broken
power-law function:

Nν dν ∝


(

ν

νp

)α

dν if ν ≤ νp(
ν

νp

)β

dν if ν > νp

(Eqn 5.2)

Observed prompt γ-ray energies range from a few thousand to a few
billion electronvolts.

• The fact that we observe such high-energy γ-rays from GRBs is strong
evidence that the photons are generated in a relativistic outflow with
bulk Lorentz factors that could be as high as γ ∼ 1000.
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• If the outflows were not highly relativistic, the compact sizes and
incredible luminosities of GRBs would imply that any γ-ray photons
with energies larger than the electron rest-mass energy (mec

2) collide
with each other to produce electron–positron pairs and we would never
observe them.

• Before the relativistic nature of GRBs was realised, this apparent
contradiction was referred to as the compactness problem.

• During the afterglow phase both the brightness of the GRB and the
typical energies of the photons it emits decrease over time. During the
early afterglow phase the GRB spectrum is dominated by X-ray
photons. At later times the dominant emission shifts to the optical,
infrared and sometimes radio bands.

• The observed flux variation during the afterglow is quite well modelled
as a series of connected power-law segments. A canonical model for
afterglow light curves has been defined, which comprises four power-law
segments. However, only about half of all GRB afterglow light curves
exhibit all four of these canonical segments.

• Astronomers have developed a physical model called the fireball model
that predicts the observational characteristics of GRBs remarkably well.
The fireball model describes the GRB as a relativistically expanding
plasma. It defines a set of critical radii at which the physical properties
and photon-emission mechanisms in the plasma change and lead to
changes in the observed prompt emission or afterglow. The critical radii
that were discussed in this chapter, from smallest to largest, are:

◦ The saturation radius at with the expanding fireball reaches its
maximum Lorenz factor, γmax. It is defined in terms of the fireball’s
initial mass (M0) energy (E0) and radius (R0):

RS = R0γmax = R0

(
1 +

E0

M0c2

)
≈ R0

E0

M0c2
(Eqn. 5.18)

◦ The dissipation radius at which emission of the observed prompt
γ-rays begins. It can be approximately defined in terms of the
observed variability timescale of the prompt emission, Δt:

Rdis ≈ 2γ2maxcΔt (Eqn. 5.19)

◦ The deceleration radius (Rdec) at which fireball begins to
decelerate, driving a forward shock into the surrounding medium,
which generates the observed afterglow emission. The value of Rdec

depends on the properties of the surrounding medium. Assuming that
medium is hydrogen gas with uniform number density nm−3, it can
be approximately calculated using:

Rdec =≈
(

3E0

4πγ2maxmpnc2

)1/3

(Eqn. 5.22)
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• Photon emission during the prompt and afterglow phases is attributed
to synchrotron radiation emitted by non-thermal populations of
electrons with Lorentz factors (or equivalently, energies) that exhibit
power-law distributions.

N(γe) dγe ∝ γ−p
e dγe (Eqn. 5.20)

• The observation of achromatic breaks in the afterglow light curves of
GRBs provides strong observational evidence that GRB explosions are
not isotropic, but instead form a bipolar jet structure.

• The physical processes described by the fireball model do not depend on
whether an isotropic or jet-like geometry are assumed. However, the
overall energy output of the GRB that we would infer from its observed
photon emission is reduced in the case of a jet geometry and this shifts
the critical radii that the fireball model defines.

• Both long and short GRBs are thought to signal the birth of a new
stellar-mass black hole.

• Short GRBs are almost certainly associated with the merging of two
neutron stars, resulting in a powerful explosion called a kilonova. The
first strong evidence for this scenario came from the observation of a
characteristic gravitational wave signal from GRB 170817A a few
seconds before the first γ-rays were detected from it.

• Long GRBs are thought to be extremely energetic analogues of
core-collapse supernovae. These events are called hypernovae and are
thought to be associated with the core collapse of very massive rapidly
rotating stars.
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Solutions to exercises

Solution to Exercise 1.1

(a) With the provided luminosity, the ionising
photon production rate is given by Equation 1.2:

Ṅγ ≈ 3× 1056 s−1 × 1039W

1013 × 3.83× 1026W

≈ 7.833× 1055 s−1

For an escape fraction fesc ∼ 1, the number of
ionising photons needed to reionise a co-moving
1000Mpc3 region is simply equivalent to the
number of baryons in that volume (which was
calculated in Example 1.1), so Nγ = 7.4× 1069.
Therefore, the number of quasars needed to
reionise the co-moving 1000Mpc3 volume over
600My (or ∼1.89× 1016 s), is:

NQ =
Nγ

Ṅγt

=
7.4× 1069

7.833× 1055 s−1 × 1.89× 1016 s

≈ 0.0050

(b) The required number density is approximately
0.005 quasars per co-moving 1000Mpc3, or
5× 10−6Mpc−3.

Solution to Exercise 1.2

(a) The number density of quasars at z ≈ 7.5 was
relatively low – a typical co-moving volume of
1Gpc3 might contain only a few quasars. Quasar
activity increased over time from z ≈ 7.5 to z ≈ 2,
which was the time at which accretion onto black
holes, and consequent emission, peaked. Quasar
density has declined since that time, so that the
number density of quasars in the present-day
Universe starts to approach that at z ≈ 7.5.

(b) We can use Equation 1.3 to relate the quasar
number density at z = 8 to one of the measured
data points (e.g. z = 6):

nQ(z = 8)

nQ(z = 6)
=

10−0.78× 8

10−0.78× 6

and so

nQ(z = 8) = nQ(z = 6)× 10−1.56

Reading off from the plot gives
nQ(z = 6) ≈ 20–30Gpc−3, which means
that nQ(z = 8) ≈ 0.6–0.8Gpc−3.

(c) The number density of luminous quasars
needed for reionisation was estimated in
Exercise 1.1 to be about 5× 10−6Mpc−3, and so to
compare the numbers we need to convert our
estimate from part (b) into the same units. As
1Gpc3 = 109Mpc3, our estimate from part (b)
converts to a value of

n(z = 8) ≈ (6–8)× 10−10Mpc−3

The observed population of quasars therefore
appears to be much too small at the relevant
redshifts to make a major contribution to
reionisation.

Solution to Exercise 1.3
We can predict MBH by substituting the tabulated
bulge masses into Equation 1.10. So for galaxy A:

MBH

109M"
= 0.49

(
4.4× 109M"

1011M"

)1.2

and so

MBH = 1.2× 107M"

The fractional uncertainties on each input Mbulge

value are ΔMbulge/Mbulge, and so the fractional
uncertainties on the black-hole mass predictions
are given by:

ΔMBH

MBH
= 1.2

(
ΔMbulge

Mbulge

)
and for galaxy A:

ΔMBH = 1.2

(
1.6× 109M"
4.4× 109M"

)
× 1.2× 107M"

= 0.5× 107M"

The resulting predicted values for MBH ±ΔMBH

for all three galaxies are given in Table S1.
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Table S1 Predicted black-hole masses and

uncertainties.

Galaxy predicted measured

MBH/M" MBH/M"
A (1.2± 0.5)× 107 (6.6± 0.9)× 106

B (1.9± 0.9)× 108 (6.0± 1.4)× 106

C (5.7± 2.9)× 105 (1.1± 0.5)× 106

Comparing the acceptable ranges for the predicted
values of MBH with the measured ranges
MBH ±ΔMBH provided in the question leads to
the conclusion that the observations for galaxies A
and C are consistent with the relation set out in
Equation 1.10, whereas the predicted black-hole
mass for galaxy B is much larger than what is
observed, and so it appears to be an outlier that
deviates from the relation.

Solution to Exercise 1.4

(a) If the black hole in the centre of GN-z11
originated at z < 20, and we consider the starting
point to be a stellar remnant (i.e. the darkest grey
region in Figure 1.16), then it must have followed a
growth trajectory that is steeper than the
Eddington-rate accretion indicated by the blue
pathway in order to reach the plotted location by
z ≈ 11. In other words, the figure shows that for a
single stellar remnant to grow to the mass of
GN-z11 it would require super-Eddington accretion
over a period of at least ∼100My. This may be
possible, but other types of black-hole seeds, with
different origins, would require less challenging
accretion rates to reach GN-z11’s mass by this
time.

(b) The blue and green tracks on the plot show
that it would be fairly straightforward for the
GN-z11 black hole to grow to a mass of 108–109M"
by a redshift of 6 to 7. The accretion rates required
to do this would be below the Eddington rate.

Solution to Exercise 2.1
The impact parameter b in this scenario is the
radius of the Sun plus the minimum distance above
the surface, i.e. b = 1.5R".

Putting numbers into Equation 2.1 gives:

α̂ =
4× 6.673× 10−11Nm2 kg−2 × 1.99× 1030 kg

1.04× 109m× (2.998× 108ms−1)2

= 5.7× 10−6 rad

= 1.2 arcseconds

This is very small compared to the angular
diameter of the Sun, and close to the limit of what
could be measured from Eddington’s photograph
(Figure 2.3).

Solution to Exercise 2.2
Equation 2.7 can be rewritten as a quadratic
equation:

θ2 − βθ − θ2E = 0

We can now apply the quadratic formula to solve
for θ:

θ =
−b±√

b2 − 4ac

2a

where a, b and c here are the coefficients of the
three terms of the quadratic, namely a = 1,
b = −β, and c = −θ2E is the right-hand constant
term (involving the mass and distances; see
Equation 2.8).

Therefore

θ =
1

2

(
β ±

√
β2 + 4θ2E

)
Solution to Exercise 2.3
We first need to substitute known numbers into
Equation 2.8 to determine θE in radians, which can
then be used to calculate the physical radius of the
Einstein rings.

For case (a), converting the distances to units of
metres gives a distance-ratio term of

DLS

DLDS
= 5.94× 10−25m−1

Substituting this term, and the provided mass
value, into Equation 2.8 gives

θE =

√
4GM

c2
× 5.94× 10−25m−1

= 0.0010 rad
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and so results in an Einstein radius of

rE = θEDL

= 1.27× 1021m

(≈ 41 kpc)

Applying the same approach to case (b) gives
θE = 4.89× 10−9 radians, and
rE = 6.0× 1011m (≈ 4AU).

Solution to Exercise 2.4

(a) If rE = 6.0× 1011m in this scenario, the
diameter of the Einstein ring is twice this, i.e.
1.2× 1012m.

A star travelling at 150 km s−1 will travel across
this distance in 1.2× 1012m/150 km s−1 ≈ 93 days.

(b) Since θE ∝ √
M (see Equation 2.8), the

Einstein-crossing timescale tE will also vary
according to

√
M .

(c) An Earth-mass object in the system would
therefore have an Einstein-crossing timescale of

tE =
√

M⊕/M" × 93 days

=
√

3× 10−6 × 93 days

≈ 3.9 hours

Solution to Exercise 3.1
In the case where T is constant, the temperature
gradient term is zero and Equation 3.8 can be
simplified to

M(r) = − kBr
2

G〈m〉
T

ρ(r)

dρ

dr

The pressure gradient term can be obtained by
differentiating the given expression:

dρ

dr
= −2ρ0

(
1 +

r

rc

)−3

·
(

1

rc

)
Substituting the expressions for ρ(r) and its
derivative into the expression for M(r) gives

M(r) =

(
−kBTr

2

G〈m〉
)−2ρ0

(
1 + r

rc

)−3

rcρ0

(
1 + r

rc

)−2



which simplifies to

M(r) =
2kBTr

2

G〈m〉rc(1 + r/rc)

Therefore the expression does not depend on ρ0, as
required. Substituting in the given values for (a)
gives M(r < 150 kpc) = 6.4× 1012M" and for (b)
M(r < 1Mpc) = 4.4× 1014M".

Solution to Exercise 3.2
The photon energy is calculated via
E = hν = 1.1× 10−22 J.

The particle rest mass energies are
mec

2 = 8.2× 10−14 J and mpc
2 = 1.5× 10−10 J, for

the electron and proton respectively.

Therefore the ICM particles have much higher
energies than the photons. Since interactions will
tend to be in the direction of thermal equilibrium,
it is likely that the photons will gain energy in the
interaction.

Solution to Exercise 3.3
Substituting the given temperature into
Equation 3.10 gives Δν/ν = 0.0084. Therefore the
fractional change in CMB signal caused by the
SZ effect is expected to be a few orders of
magnitude stronger than the cosmological
anisotropies in the CMB. (Peak frequency and
temperature are proportional for a black body, and
so fractional deviations for the CMB are the same
in both quantities).

Solution to Exercise 3.4

(a) The blue (spiral) galaxies contribute most to
the total mass function at the low-mass end,
whereas the red (elliptical) galaxies make up the
majority of the high-mass galaxies.

(b) Within the mass range 1010–1011M" the mass
functions for isolated and cluster galaxies have
very similar values, and so elliptical galaxies of this
mass range appear equally common in isolated and
cluster environments.

(c) The mass function for isolated blue galaxies
has higher values than for cluster galaxies across
the full mass range, and so a larger proportion of
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blue (spiral) galaxies are found in isolated
environments than in clusters.

(d) For spiral galaxies, the mass function has a
similar shape for isolated and cluster galaxies, and
so the environment doesn’t seem to affect what
range of masses form. For the elliptical galaxies
the shape is different at low mass: it appears that
low-mass ellipticals are more likely to be in clusters
rather than isolated environments.

Solution to Exercise 3.5
Reading off Figure 3.14, a BCG with an apparent
(X-ray measured) mass deposition rate of
∼200M" y−1 has a typical star-formation rate of
∼ 2M" y−1 (noting that the axes of the plot are
logarithmic – it is difficult to estimate precisely
from the plot, but must be around a few solar
masses per year). In other words, it is forming stars
at a similar rate to the Milky Way but it seems
that mass is being deposited in the BCG at a rate
at least 100 times that of the Milky Way. In fact,
The Milky Way appears to be depleting its gas
supply, so that eventually there may not be enough
to form new stars, whereas the BCG appears to be
building up a lot of gas that is not forming stars.

Solution to Exercise 3.6
The sound speed in this cluster is calculated via
Equation 3.17:

cs =

√
5(1.381× 10−23 JK−1)× (5× 107K)

3〈m〉
= 1071 km s−1

Using t = d/cs and substituting in the given
distance of 200 kpc gives an age of
t ∼ 2× 108 years.

If the radio-galaxy expansion was 2 or 3 times
faster, the age would be shorter by the same factor.

Comparing with Figure 3.13, the radio-galaxy
lifetime appears comparable to cooling times in the
central few kpc of nearby clusters.

Solution to Exercise 3.7
As with Example 3.4, simply integrating the
expression for number density of jets of different

power will just lead to the density of radio galaxies
of all powers. To get the total heating rate we first
need to multiply by the heating rate (jet power)
for an AGN of jet power Q before performing the
integral. So

εRG(Q) dQ = n0
Q

Q∗

(
Q

Q∗

)−β

dQ

= n0

(
Q

Q∗

)1−β

dQ

and the total heating rate is

εTOT =
n0

Q1−β
∗

∫ Q2

Q1

Q1−β dQ

=
n0

Q1−β
∗ (2− β)

[
Q2−β

]Q2

Q1

Substituting in the given values including
Q1 = 1035W and Q2 = 1038W gives
εTOT = 7.6× 1031WMpc−3.

If our assumed distribution of jet powers is
accurate, then the average heating rate is similar
to (within 20% of) the energy loss rate discussed in
Example 3.4, and so there is enough energy from
AGN jets to balance X-ray cooling in the region
considered.

Solution to Exercise 4.1
Substituting in the provided angles and speeds
(and remembering to convert angles to units of
radians) leads to the values of βapp listed in
Table S2.

Table S2 Values of βapp for different θ and β

combinations.

β θ = 1◦ θ = 10◦ θ = 25◦

0.5 0.017 0.17 0.39
0.9 0.16 1.4 2.1
0.99 1.7 6.9 4.1

Solution to Exercise 4.2

The provided values of V/c give Lorentz factors
of γ = 1.15, 3.20 and 7.09, respectively for the
three speeds.

Substituting these, and the provided value of
θ ′ = π/2, into Equation 4.7 gives values of
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tan θ ≈ 1.73, 0.329 and 0.142 for (i), (ii) and
(iii), respectively. Taking the inverse tan function
for each case then gives (i) θ = 1.05 radians
(or 60◦), (ii) θ = 0.318 radians (18◦) and
(iii) θ = 0.142 radians (8.1◦).

Solution to Exercise 4.3
We first need to calculate the Doppler factor, D.
We first calculate the Lorentz factor, γ, for the
provided value of V/c, which gives γ = 1.8983.
Then substituting for γ, V/c and the provided
value of θjet gives D = 3.4061. Via Equation 4.12,
the emitted luminosity density, L ′

ν , will be smaller
than the observed value by a factor D 3+α = 82.4,
and so L ′

ν = 4.5× 1022WHz−1.

Solution to Exercise 4.4

(a) For γ = 1000, substituting in the charge and
mass of an electron gives

νsyn ≈ (1000)2(1.602× 10−19C)(10−7T)

2π(9.11× 10−31 kg)

= 2.8× 109Hz

The same calculation for a proton gives
νsyn = 1.5× 106Hz.

(b) An energy of E = 500MeV corresponds to
different Lorentz factors for the electron and
proton. For the electron

γe =
500× 106 eV× 1.602× 10−19 J eV−1

(9.11× 10−31 kg)(2.998× 108ms−1)2

= 978

For the proton, γe ≈ 0.5. In this case, the electron
is highly relativistic, but the proton is not, because
of its lower mass. The corresponding synchrotron
frequency for the electron is

νsyn ≈ (978)2(1.602× 10−19C)(10−7T)

2π(9.11× 10−31 kg)

= 2.7× 109Hz

The proton would produce cyclotron emission at

νg =
(1.602× 10−19C)(10−7T)

2π(1.67× 10−27 kg)

= 1.5Hz

Solution to Exercise 4.5

If 40% of the available energy powers the jet, then
ηjet = 0.4. The necessary accretion rate can
therefore be calculated by rearranging
Equation 4.21:

ṁ =
Qjet

ηjetc2

Substituting in the provided values therefore gives
ṁ = 9.735× 1021 kg s−1, using the conversion from
watts to SI base units: 1W = 1kgm2 s−3.

The accretion rate in units of solar mass per year is
therefore ṁ ≈ 0.15M" y−1.

The AGN luminosity is now straightforward to
calculate from Equation 4.22 using the provided
value of ηrad = 0.1 and our calculated ṁ; it is
LAGN = 8.7× 1037W. In fact we could have
calculated this in a simpler way just by multiplying
the jet power by the ratio of ηrad/ηjet.

Solution to Exercise 4.6

We first substitute the expression for n(E) into the
integral term of Equation 4.23 to give

Ue =

∫ Emax

Emin

En0E
−p dE

which simplifies to

Ue =

∫ Emax

Emin

n0E
1−p dE

We can now evaluate the integral for the two cases
given. For (i), where p = 2, the final expression is

Ue = n0 (lnEmax − lnEmin) = n0 ln(Emax/Emin)

In situation (ii), where p takes any value except
exactly 2,

Ue =
n0

(2− p)

(
E2−p

max − E2−p
min

)
Solution to Exercise 4.7

(a) The total energy contained within the radio
lobes, Etot, is the total energy density (Utot)
multiplied by the source volume. If the plasma is
at equipartition then the magnetic field energy
density makes up half of Utot, so we can work out
UB = B2/(2µ0) and multiply by 2. Hence
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Utot = 1.27× 10−11 Jm−3 (where we retain some
extra precision for later calculations). The volume
V is given by considering a cylinder of length
2× 250 kpc (because there are two lobes) and
radius 30 kpc, so that V = πr2l = 4.15× 1064m3.
Therefore Etot = UtotV = 5.29× 1053 J.

(b) The enthalpy is obtained by adding a factor of
PextV to Etot, so H is equal to
5.29× 1053 J + 3.55× 1051 J ≈ 5.3× 1053 J.

(c) To produce the observed radio source, the jet
power must have been sufficient to supply the
energy needed for the current internal energy and
the work done over the time period the jet has
been active. In other words, Qjet must be at least
H/t, where t is the source age. Therefore Qjet must
be at least:

5.3× 1053 J

(108 y× 3.156× 107 s y−1)
= 1.7× 1038W

(You will obtain slightly different values if you do
no intermediate rounding.)

Solution to Exercise 5.1

From Figure 5.4, there is a peak (or at least a
pronounced shoulder) on the short-GRB side of the
vertical dashed line representing GRBs with
typical durations ∼0.5 s, so we will use this as T90.

From Figure 5.5, a typical short GRB fluence is
S15–150 keV ∼ 10−10 Jm−2.

These values are only approximate and you may
have chosen slightly different ones.

Using our chosen values for S15–150 keV and T90,
together with the luminosity distance we were
given and our assumption that the GRB emission
is isotropic, we can estimate the luminosity using:

L15–150 keV =
4πd2LS15–150 keV

T90

=
4π × (6200Mpc)2 × 10−10 Jm−2

0.5 s

=
4π × (1.91× 1026)2m2 × 10−10 Jm−2

0.5 s

≈ 9× 1043W

Solution to Exercise 5.2

(a) To answer this part we simply use
Equation 5.15, substituting the values we were
given in the question for γ and Δtmin.

R ∼ γ2cΔtmin

∼ 1002 × 3× 105 km s−1 × 10−3 s

∼ 3× 106 km

(b) From the table of constants,
R" = 6.96× 108m, so the prompt-emission region
is only just over four times the size of the Sun,
even allowing for relativistic effects.

Solution to Exercise 5.3

(a) To solve this part we use the formula for the
saturation radius (Equation 5.18), using the values
for R0 and γmax given in the question:

RS = R0γmax

= 200R"
= 200× 6.96× 108m

= 1.4× 108 km

(b) To solve this part we first rearrange
Equation 5.17 to isolate M0

M0 ≈ E0

γmaxc2

Using the numerical values given in the question:

M0 ≈ 1044 J

200× (2.998× 108ms−1)2

≈ 5.56× 1024 kg

≈ 5.56× 1024 kg

1.99× 1030 kgM−1
"

≈ 2.8× 10−6M"

Solution to Exercise 5.4
To solve this problem we will use Equation 5.17
with E0 ∼ 1044 J.

γmax = 1 +
E0

M0c2

The minimum value of M0 that is consistent with
observing γ-rays of energy $0.5MeV that have a
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non-thermal spectrum is M0,min ∼ 10−7M".
Using this value we evaluate the denominator in
the second term:

M0c
2 = 10−7 × 1.99× 1030 kg× (3× 108ms−1)2

= 1.79× 1040 J

Using this result, we evaluate Equation 5.17:

γmax = 1 +
E0

M0c2
= 1 +

1044 J

1.79× 1040 J

≈ 5600

The maximum value of M0 that is consistent with
observing γ-rays with energy $0.5MeV is
M0,min ∼ 5× 10−5M". Again, we evaluate the
denominator in the second term. This time we do
so by noting that the value of M0c

2 must be
500 times the value we calculated in the first case:

M0c
2 = 500× 1.79× 1040 J

= 8.96× 1042 J

Hence the first expression now gives

γmax = 1 +
E0

M0c2
= 1 +

1044 J

8.95× 1042 J

≈ 12

Solution to Exercise 5.5
To solve this problem we first combine
Equations 5.22 and 5.23 to write

tdec,obs ≈ Rdec

2γ2maxc

≈ 1

2γ2maxc

(
3E0

4πγ2maxmpnc2

)1/3

≈
(

3E0

32πγ8maxmpnc5

)1/3

Now, using the values given in the question and
noting that 1 cm−3 = 106m−3 we evaluate this
expression

tdec,obs ≈
[

3× 1044 J

32π × 2008 × 1.6726× 10−27 kg

× 1

106m−3 × (2.998× 108ms−2)5

]1/3
≈ 6.6 s

Solution to Exercise 5.6

(a) To solve this part we can use Equation 5.24.
First, we need to convert the value of ΘJ = 6◦ from
units of degrees to radians. Combining these two
steps, we find

E0 =
(6 degrees)2

8
× 1044 J =

(6π)2 × 1044

8× 1802
J

= 1.4× 1041 J

(b) To solve this part we need to calculate the
factor by which the value of E0 calculated in
part (a) is smaller than Eiso. If we use the symbol
fjet to denote this factor, then we can write:

fjet =
E0

Eiso
=

Θ2
J

8
=

(6π)2

8× 1802
= 0.0014

Now with reference to Equations 5.18 and 5.22 we
can write down how RS and Rdec depend on E0 i.e.

RS ∝ E0

Rdec ∝ E
1/3
0

Using these proportionality relationships and
introducing the symbols RS, jet and Rdec, jet to
denote estimates of the saturation and deceleration
radii under the assumption of a biconical jet
geometry, we can estimate the saturation radius

RS, jet = fjetRS,iso =
(6π)2

8× 1802
× 1.4× 1011m

= 1.9× 108m

and the deceleration radius as

Rdec, jet = f
1/3
jet Rdec,iso

=

[
(6π)2

8× 1802

]1/3
× 1.6× 1016m

= 0.111× 1.6× 1016m

= 1.78× 1015m
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